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SECTION I 

INTRODUCTION AND SUMMARY 

The  work  described  in  this  report  represents  a  continuation of the effort 

initiated  under NASA contract NAS 1-13680, Study of Synthesis  Techniques 

for Insensitive  Aircraft  Control  Systems.  The  by-products of that  contract 

were two new advanced  theoretical  concepts  for  insensitive  controller  design 

that had been  developed by contract  consultants  Professor  William A. 

Por te r  of the University of Michigan  and Professor David L. Kleinman of 

the  University of Connecticut.  The  concept  developed  by Professor   Porter  

has  been  designated  the  Finite  Dimensional  Inverse  method  whereas  that 

developed  by Professor  Kleinman  has  been  termed the  Maximum  Difficulty 

concept. At the  conclusion of the  initial  effort,  neither of the  concepts had 

been  developed to a point where the resultant  insensitive  controller  designs 

could  be  evaluated on a  realistic  flight  control  example.  The  objective. of 

this  contract  effort, NAS 1-14476, Insensitive  Control  Technology  Devel- 

opment, was to extend  the  theoretical  base of the two concepts to workable 

insensitive  controller  synthesis  techniques  and to evaluate  the  resultant 

insensitive  controller  designs on a realistic  flight  control  example. As in 

the first study, the C -5A longitudinal  dynamics  model  was  used as the test 

bed for  evaluation. 

The  results of the  study of the two concepts are  summarized below 

I 



FINITE DIMENSIONAL  INVERSE CONCEPT 

The present  formulation of this  concept is much more  suited to trajectory- 

type sensitivity  problems than to stationary  flight  control  problems.  The 

controller  designed for the  C-5A example  using this concept  involves  time- 

varying  gains.  The  controller's  performance  for  this  example  fulfilled the 

theoretical  predictions,  but the present  formulation of the concept  limited 

the reduction in sensitivity to certain  selected  outputs. For  the C-5A 

example  design, the control  surface  displacements  were  suitable as 

selected  outputs.  Unfortunately,  reductions in sensitivity of these  outputs 

did not  yield  reductions in sensitivity of other  important  responses,  such 

as bending  and  torsion  moments. 

Despite  these  deficiencies  with  respect to the C-5A example, the concept 

exhibits.  certain  promising  aspects  such as on-line  parameter  identification 

and sensitivity  reduction of minimum  phase  input-output  systems.  The 

study  also  indicates  that  although the computational  requirements  are 

severe,  they  are not  beyond current  capabiiities. 

n!CAXIl'vlSTM DIFFICULTY  CONCEPT 

The  objective of the  Maximum  Difficulty  concept  was  extended to exploration 

of a  technique  devised by Professor Kleinman  which  utilizes the Informa- 

tion Matrix  element of parameter  identification  theory, In its complete 

form,  this  concept  requires  insensitive  controller  design for a flight 

condition  with  minimal  controllability  index  and,  at the same  time,  desen- 

sitizing  system  responses to variations  in  uncertain  parameters, The 

latter function,  involving  the  Information  Matrix  approach,  received  a 

2 
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majority of the  attention  in the contract and will be  the  main  subject of 

the  Maximum  Difficulty  concept  discussion. 

In addition to the  development of the  Information  Matrix  concept, Professor 

Kleinman  participated  heavily  in the actual  design  and  preliminary  evalu- 

ations.  Formal  evaluation of the  cqncept  was  performed  on  the 15 -state 

Case 4R residualized C-5A model  using  the  criteria  defined  in  the  initial 

phase,  The  evaluation  revealed  that the insensitive  controller  designed 

with  the  Information  Matrix  approach  performed a s  well as the top-ranked 

controllers of the  previous  study. 

I 

I 
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SECTION I1 

SYMBOLS 

UPPER CASE 

Bending moment 

Control input coefficient  matrix in response equation 

Plant  coefficient  matrix 

Control input coefficient  matrix 

Coefficient  matrix of state  vector  in output o r  response 
equation 

Identity  matrix 

Performance index 

Gain matrix 

Nominal  gain  matrix 

A Riccati  matrix 

Finite  dimensional  inverse of T Information Matrix 

Stability  derivative  (pitching  moment due  to vertical 
velocity) 

Normal  distribution  (a = mean,  b = standard  deviation) 

Inverse of K(t) 

Weighting matrix 

0' 



S 

s ($ )  m 

T 

T 

W 

0 

Weighting matrix 

Sensitivity index 

Torsion  moment 

Input-output transformation 

Nominal  plant  input-output  transformation 

Weighting matrix 

Coefficient  matrix  in  the  differential  equation 
representation of M 

LOWER CASE 

e 
i Basis  vectors 

p( t)  State  vector  for M 

U 

V 

W 

X 

Dynamic pressure 

Alternate  state  vector  for M 

Control input vector 

Input to M 

Output vector 

State  vector 

Input vectors to  the  nominal  plant  giving  outputs g. 

Output of M 

1 
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I I  I I 

GREEK SYMBOLS 

Lower  Case 

P 

Scaling  matrix  in  the  differential  equation  representation 
of M 

Symmetric  matrix function of the  5.(t) 
1 

Vector of parameters 

Scalar  design  parameter  in  insensitive  compensator 
implementations 

Scaling  factors 

Perturbation  transformation 

Aileron  displa'cernent 

Inboard  elevator  displacement 

Damping ratio 

Scalar  white  noise input 

Outputs  corresponding to specific  inputs  and  plant 
variations 

Noiselsignal  ratio 

Standard  deviation 

II) Frequency 
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SECTION I11 

FINITE DIMENSIONAL  INVERSE  COMPENSATOR 

One of the  major  objectives of this  study was the  development  and  quantita- 

tive  evaluation of the  finite  dimensional  inverse  technique  for  compensation 

for  parameter  uncertainty.  The  finite  dimensional  inverse concept, 

conceived  in  the  previous  insensitive  controller  study, is based on the  concept 

of the a priori  construction of a set  of inverse  functions which are  derived 

from a finite  number of input-output pair  relationships.  The  input-output 

pairs  are  specified by type of input,  sel.ected output,  and a combination of 

uncertainties  that  represent  variations  in  plant  behavior  from a nominal or 

no-uncertainty  condition. 

In operation,  the  measured  outputs of the  plant a r e  used  to  determine  the 

degree of mapping of plant  outputs on the  prestored outputs at  off-normal 

conditions.  The degree of mapping  then  dictates  the  formation of the 

feedback  signals  using  the  inverse  functions  that  are  used  to  compensate  for 

the  plant  operating at  off-nominal  conditions. In essence, the inverse 

functions  represent  the  change  in  control which is necessary  to  negate  the 

effect of parameter  uncertainties. 

In investigating  the  finite  dimensional  inverse  concept,  the  specific  goal of 

this  part of the  study  was to  implement  the  concept  for a simple 

illustrative  example  and  for  the C-5A example  and to  examine  its 

performance and limitations  via  simulation. 

1 
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The  illustrative  example is a f i rs t   order   system with two parameters. 

This  example  served two purposes. First, i t  provided a simple  problem 

for  purposes of debugging software  and  examining  numerical  aspects of 

implementation.  Second, it  permitted  extensive  analysis of the  effects 

of nonlinearity  with  respect  to  the  plant  parameters;  variation  in the  design 

parameter which governs  the  attainable  degree of insensitivity;  and  sensor 

noise. 

The  C-5A example  provided a more  realistic  test  for the  concept.  Addi- 

tional  effects which  could be  examined  with  this  example  were  those asso-  

ciated with authentic  disturbances,  unmodeled  dynamics,  authentic  types 

of parameter  uncertainty, and  the  choice of outputs of interest. 

Two forms of the  compensator  were  examined. One included a simulation 

of the  nominal as a model;  the  other  excluded  this  model. In general, 

the performance of the  compensators was consistent with theoretical  pre- 

dictions: both configurations  yielded  reductions  in  sensitivity.  The  second 

configuration  exhibited a tendency  toward  an  initial  high  gain  instability  for 

a constant  sensitivity  gain.  This could be  alleviated with a time-varying 

sensitivity  gain.  The  concept a s  implemented is based on the  assumption 

that  the system  outputs  are  linearly dependent  on  the parameter  variations. 

The  effect of actual  nonlinear dependence  was  found  to  be  significant  in  the 

sense that  the  reduction  in  sensitivity  for  large  parameter  variations 

differed  significantly  from  the kinear theoretical  predictions. But the 

sensitivity was reduced  even  for  large  parameter  variations. 

8 



In the C-5A example  it was  found that  the  compensator  provides  reduced 

sensitivity  in  terms of the outputs of the system, but  not in terms of the 

system  states or other  system  responses of interest. To be of real  bene- 

fit for  such  an  example,  this  deficiency would need to be  remedied.  It 

was also found that  the  compensators  did  provide  reduced  sensitivity to 

gust  disturbances  and  were  not  seriously  affected  by  unmodeled  dynamics. 

Details  of  the  mathematical  formulation  and the experimental  results are 

described below. 

NIATHEMATICAL FORMUUTION 

Consider a linear  system  represented by an  input-output  transformation 

T(a )  with cr 'denoting  an  r-dimensional  vector of parameters.  The  system 

may  be  represented  in  state  variable  form as 

where T ( a )  maps the  input  u  into  the  output w. Let  us  assume without 

loss of generality  that the nominal  value of the parameter  vector is zero 

and  let T denote the nominal  system. We assume  that  the  dependence of 

T ( a  ) on (Y is sufficiently  smooth so that  linearization  about  zero is an 

adequate  model. If [e,, e2, , . . , e ] is a %asis   for  R , then  the  lineariza- r 
tion of 6 T(u)  becomes 

0 

r 

9 



where 

6T = T((y) - T 0 
r 

i= 1 
a - c CYi ei - 

<i = [T (ei) - To]u, i = 1 , 2 , .  . . , r  

We note  that 5. generally  depends on u. 
1 

For the  moment,  suppose  that u is known a priori  so that  the f. may be 

computed.  Let 
I 

For  simplicity of discussion, we will  assume a single  input  u.  The  exten- 

sion to more  than  one  input is straightforward.  Assuming  that X is con- 

tained in the  range of T there  exist functions  [y . . . , y 3 such that 
0’ 1’ 72’ r 

We call a map M a finite-dimensional  inverse of T i f  M is linear, bounded, 

and satisfies 
0 

Msi = yi, i=l, . . . , r (8) 

Assuming  the se t  of functions { 5i(t)] are  linearly independent on every 

finite  interval [O, TI, the  map M may be realized  in the Following state 

variable o r  differential  equation  form. 2’ Let M map v into z. Then M 

is given by 

10  
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where 

and  K(t) is a symmetric r x r matrix.  The  matrix  K(t) is the inverse of a 

symmetric  matr&  N(t)  and  satisfies  the  Riccati  differential e.quation. 

k ( t )  = ${X(t>  K(t) f K(t) X(t>] - K(t)Nt)K(t) (15) 

where the  elements of the matrices  N(t) and Il'(t) a r e  defined a s  

The  vector  p(t)  may be computed  in  the  following  manner as an  alternative 

to Equation (10). Let  us define  the vector  q(t) as the solution of the  follow- 

ing  differential  equation: 

$t)  = 5(t)'V(t), q (0) = 0 

Then  p(t) is given  by  the  equation 

11 



since 

The  numerical  solution  for p( t) via Equations  (18)  and (19)  was found to be 

much  better behaved  than  the  solution for p( t) via Equation  (10) €or t near  

zero. 

The  finite  dimensional  inverse  may be used as a compensator to reduce 

sensitivity.  It  may  also be used  in a parameter  identifier mode. Two com- 

pensator  configurations are shown schematically  in  Figures 1 and 2. The 

on-line  identifier  configuration is shown schematically  in  Figure 3 .  

Notation  in these  figures will  be  used  in the  remaining  discussion. In 

particular, we note  that 

w is the  output of the  uncompensated  system 

w is the  output of the  nominal  system 

$ is the  output of the  compensated system with model 

0 

- 
w is the  output of the  compensated  system without the  model 

Similar notation is used for the state  vectors  of  these  systems, Fo r  example, 

x is the state  vector of the uncompensated  system. 

1 2  



t 

Figure 1. Compensated  System  with  Model 

t 

Figure 2. Compensated  System  without  Model 

13 



Figure 3 .  On-Line  Identifier 

The  map M for the  compensated  systems was computed  according to the 

equations  given  above with the 15.1 precomputed.  The  only  difference in 

M between Figures 1 and 2 is in the input's and  outputs. In Figure 1, the 

input  v is taken to be % - w and  the  output is called z. In Figure 2 the 

input to M is G and the output is called z. The  map M for the  on-line 

identifier was computed  in a similar  manner,  except that y(t) is called f,  
the r x r identity  matrix.  The [ti] were replaced by 15.1 computed on line 

from the  equations 

1 

h 

0 A 

h 

1 

A aT si = [---]u, i = 1 , 2  ,..., r 
CY. 

The  output, z , is called &. 

14 



where T (a, p) is the,closed-loop  map  from u to G. For a single-input/ 

single-output  system,  this  index is the limit as 11.1 11 tends  to  zero of the 

ratio of the e r r o r  between  the  compensated  system and the  nominal  system 

outputs to  the e r r o r  between  the  uncompensated  system  and  the  nominal 

system  outputs, i. e. ,  

m 

A 

S ( p) = lim w - wo 
m 

llcyll-0 w - w 
0 

In the general  case of an  arbi t rary M, 

and i t  follows  that 

Thus, with M = T we would have -1 
0 '  

The M that  was  constructed  above is an  approximation  to T and  in  fact 

is equal  to T on a finite  dimensional  subspace.  Thus, we can  expect 

that  the  compensator  will  exhibit  reduced  sensitivity. 

-1 
0 

-1 
0 

15 
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For the  system of Figure 2, defining a similar  sensitivity index, 

p) - To) ( T ( d  - To)-'1l (27) 

where T ( a ,  p) is the closed-loop  map  from u to w. This  leads to  the same 

result as obtained for Sm( p), i. e. ,  

S(p) = !1(I + p ToM)-'Il 

Our major  interest was to  assess the  utility of this  concept  to  reduce 

sensitivity. 

As a by-product of our  computational  analysis, we also  examined the utility 

of the  concept  for  on-line  parameter  identification  for  the  simple  illustrative 

example.  The  configuration is shown in  Figure 3 .  In this  case, M is a 

finite  dimensional  inverse to  the map  T(u)  from (Y to (T(cY)  - To) u = w - w 

* 

A 

0' 

THE ILLUSTRATIVE  EXAMPLE 

Several  experiments  were  performed with  the  following scalar  system 

assuming two uncertain  parameters: 

T(al, a,): i ( t )  = 41 + al)  X ( t )  + (1 +CY,) u(t), ~ ( 0 )  = 0 

w(t) = x(t) 

where  the  nominal  values of CY and a 2  are  zero.  In addition to examining 

the performance of the two compensators  (with  and without an  explicit  model), 

the performance of an  on-line  identifier  was  analyzed. 

1 
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The  partial  inverse  for  the  compensators w a s  constructed  assuming for 

simplicity  that  the  input u was a unit  step, As such,  the  response of the 

nominal  system  denoted  by x ( t )  and  the  input-output pairs, [yi(t),  si(t)], 0 
corresponding 

xo(t) = 1 

y,(t) = -( 

to  perturbations  in CY are: 

- e  

1 
-t 

1 - e  ) 
-t 

The pairs [yi(t),  ~$(t)] were computed  from  the  equations 

i1 - -5 ,  - x CY 5 ,  ( 0 )  = 0 

i2 = -s2  f u CY2, 52(0) = 0 ( 3 4 )  

X 5i - si> i = 1, 2 ( 3 5 )  

- 
0 1' ( 3 3 )  

Y i  

with CY - - or2 = u = 1. Equations ( 3 3 )  and (34) which  define 5 and c2 are 

the  variational  equations  associated  with  the  parameters CY and CY Equa- 

tions ( 3 5 )  which  define y and  y2 are the  nominal  input-output  relations. 

1 

l 2 '  

1 

The  on-line  identifier  was  constructed  by  choosing  the  output to be 

Estimate of 
Estimate of CY 

17 



In this  case the  input-output pairs  [$ si] are given  by i’ 

el - - -5 ,  -xo, e ,  = -5, + u, si ( 0 )  = 0 

with 5.  being  computed on line for   arbi t rary inputs  u(t). 
1 

Experiments  were  conducted  to  examine  the  effects on  the  compensator 

performance of 

0 Magnitude and  direction  of  the  parameter  vector CY, 

0 Magnitude of the  design  parameter pa and 

0 Sensor  noise. 

Transient  responses  for a five-second  interval  were  computed  for  various 

combinations of (Y and p with  and  without sensor  noise.  Noise-to-signal 

ratios less than o r  equal to  one caused no significant  changes  in  performance. 

Quantitative  results  for  the  variations  in CY and p with no sensor  noise are 

summarized below. 

A typical  response  plot of the  output w(t) is shown in  Figure 4 for a step 

input . 

The  responses of the  compensated  systems  are  closer to  the  nominal 

response than is the  uncompensated  response.  The  effect of the parameter 

B is also  evident  in  Figure 4. The larger  B yields  less  deviation  from  the 

nominal.  The error  ratios  corresponding to  the responses of Figure 4 a re  

shown in  Figure 5 .  Both these  figures  display a significant  initial  transient 

18 
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for  the  compensator without  the model.  This  transient is caused by the 

initial high gain on  the system output. In the  compensator  with  the  model, 

this high gain is multiplied  by  the e r ror   ra ther  than  the  output,  and  the 

initial  transient .is greatly  subdued. A time-varying p could be introduced 

to  alleviate  the  initial  transient of the  compensator without  the model. 

The  theoretically  predicted  values  for the error   ra t io  is ( p $. 1)-l which 

gives 1 / 2  for p = 1 and 2 / 3  for B = 112. These  values are somewhat less 

than  the steady  state  values shown in  Figure 5. The  parameters  for  this 

figure are a = 0 and m2= -112. The error  ratios  for a case with a = 0 

and a2 -1/10 a r e  shown in  Figure 6 for p = 1. In this  case of smaller 

parameter  magnitudes, the steady  state  ratios  very  closely  approximate 

the  theoretically  predicted  value of 1 / 2 .  The  direction of the vector 

(al, a ) als’o  influences  the  degree of compensation.  The error   ra t ios  

after five  seconds for  12 different  values of(a a,) and  three  values of p 

a r e  given  in  Table 1 .  The  data  generally  confirm  the  theory for small  

values of a and (Y and  the  predicted  trend  in p. The  major  deviation 

occurs when the parameters  are  equal and a r e  of the  same  sign. In this 

case the steady  state  values of the  outputs for  the  compensated  and  uncom- 

pensated  systems  are  equal.  Thus,  the  denominator of the error   ra t io  is 

approaching  zero,  and  the  fact  that  the  ratios  have  the  magnitudes shown 

is an  indication  that  the  compensators  behave  well  even  in  this  case. 

1 1 

2 

1’ 

1 2 

The  on-line  identifier was  also  evaluated  by  computing  five-second  transient 

responses.  Responses to a unit  step input  with zero  initial condition f o r  

several  values of ( ) are shown in  Figure 7. Four  general  charac- 

teristics are evident  in  this  figure.  First, i f  ~y is zero,  the  estimate 

of a2 is exact  to  within  the  computer  word-length  accuracy.  Second, for 

2 

1 
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TABLE 1. ERROR  RATIOS  FOR  VARIOUS  VALUES OF al, cy2, p 

eo 
W 

@2 

0.1 0 

0 0 .1  

0.1 0 .1 

-0 .1   0 .1  

0.5 0 

0 0 .5  

0 . 4   0 . 4  

- 0 . 4   0 . 4  

1 . 0  0 

0 1 . 0  

0 . 7   0 . 7  

- 0 . 7   0 . 7  

p = 0.5 
Theoretical 

Ratio . 6 7  
A 

x -x 
x -x 

0 - 
0 

0.685 

0.645 

0.738 

0.624 

0.742 

0.571 

1.024 

0.485 

0. 792 

0.498 

1,292 

0.342 

- 
x -x 

0 - 
x -x 

0 

0.686 

0.642 

0.630 

0.622 

0.742 

0.568 

0.885 

0.484 

0. 792 

0.495 

1.075 

0.340 

p = .75 
Theoretical 
Ratio . 5  7 

A 

x -x 
0 - 

x -x 
0 

0.592 

0.547 

0.606 

0.524 

0.658 

0.468 

0.827 

0.384 

0,718 

0.396 

0.997 

0.251 

'i 
- 1  

- 
x -x 

0 - 
x -x 

0 

0.606 

0.528 

-0,0784 

0.515 

0 .661  

0.459 

0.267 

0.380 

0.719 

0.386 

0.248 

0.249 

~~ ~ ~ 

@ = 1.0 
Theoretical 

Ratio . 50  
A 

x -x - 0 
0 

x -x 

0.521 

0.474 

0.485 

0.452 

0.591 

0.396 

0,624 

0.316 

0.656 

0.327 

0.687 

0.198 

- 
x -x 

0 

x -x 
7 

0 

0.559 

0.428 . 

-1.153 

0.430 

0.599 

0.376 

-0.593 

0.308 

0.661 

0.309 

-0,852 

0.193 
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nonzero (Y the  estimate of cy2 is more  accurate than  the estimate of (Y 1' 1' 
Third,  for  nonzero CY the  accuracy of the  estimate is greatest  in the 

initial  phase of the  response.  Fourth,  accuracy is better  for  small  mag- 
1' 

The  first  characteristic is a consequence of the  fact  that  the  system output 

is linear in CY for  zero  initial  conditions.  This  fact  also  contributes  to  the 

estimates of (Y being more  accurate than  the estimates of CY The  third 2 1' 
characteristic is a consequence of the  fact  that a s  the system  approaches 

steady  state,  the  estimate is given by 

2 

which gives  the  linear  relation 
A A 

(CY2 - q s s  = (x-x ) 
0 ss  

ss 

( 3 9 )  

For  this  example, the  only correct  estimate  satisfying  Equation (40) occurs 

when CY = 0 and is arbitrary.  The  fourth  characteristic is a manifesta- 1 CY2 
tion of the  nonlinearity  with  respect to CY of the system output. 

1 

Responses of the  on-line  identifier  to a sinusoidal  input are shown in 

Figure 8. The same general  characteristic's as for  the  step input occur. 

Additional  responses  were  computed  for  other  values of ( a,) and for 

cases with ''sensor  noise"  added  in the simulation.  The  noise  caused no 

serious  degradation  in  performance. 

a 
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In summary,  the  compensator  and  the  on-line  identifier  fulfilled  the  theoret- 

ical  expectations. 

THE C-5A EXAMPLE 

A  seventh  order  model of the C-5A was used as the  design  model.  This 

model was generated  from  the  79th  order  model  described  in  Reference 1 

as  Case 1. The  unsteady  aerodynamics  were  truncated as in  Reference 1 

to  arrive  at  a 42nd order  model  called  Case 2. Then  a  13th order  model 

called  Case 5 was computed  by  the  process of residualization.  This  model 

retained  only  one  flexure  mode.  The  seventh  order  gust  model  was  then 

approximated by a first order  gust  model yielding the seventh  order  reduced 

model  called  Case  5R'.  The  data f0.r this model a r e  given in the  Appendix A. 

The  parameter  variations  considered  were the same  as  those in Reference 1. 

In Reference 1, a 15th order  model  called  Case 4R which retained two 

flexure  modes  was  used  as  a  design  model.  Comparison of the  open-loop 

performance of Case 4R,  Case 5 R, and  Case 5R '  models is given in Table 2.  

The  results  indicate  a  high  degree of consistency. 

A  nominal  controller  for  Case  5R'  was  computed  using  quadratic  optional 

theory  with  the  same  response  vector  and  weights  as  used  in the nominal 

controller  design  for  Case 4R. The  response  vector and  quadratic  weights 

are given in Table 3 .  The  closed-loop  performance  for the nominal  param- 

eter  setting  for  Case 4R and Case  5R' is shown ip Table 4. Again, there is 

a high degree of consistency. 
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TABLE 2 .  OPEN-LOOP PERFORIVIANCE  COMPARISON 

Maneuver  load 
bending (N -m) 

Gust  load  bending 
(N-m)  

Gust  load  torsion 
(N-m) 

Short   period  frequency 
( r a d /  s e d  

Short   period  damping 

(sec- l )  

Case   4R 

0.0427 x 10 6 

0.12 x 10 
6 

0.179 x 10 
5 

1.62 

0.56 

Case   5R  

0.0427 x 10 6 

6 
0.12 x IO 

0.179 x 10 
5 

1.55 

0.57 

Case   5R '  

0.0427 x 10 
6 

0.12 x lo6 ' .  

0.174 x 10 5 

1.55 

0.57 



I 

TABLE 3 .  RESPONSE VECTOR AND QUADRATIC  WEIGHTS 

Response  Vector 

r 
dl 

d2 

d3 

d4 

d5 

r 

r 

r 

r 

r 
d6 

r 
d7 

r 
d8 

r 
dg ' 

Physical  Quantity 

B1 

T1 

'B 1 

T1 

6a 

'e 
i 

6a m 

'e i 

r CF 

= bending  moment at wing root 

= torsion  moment at wing root 

= rate of change of bending 
moment a t  wing root 

= rate of change of torsion 
moment at wing root 

= aileron  displacement 

= inboard  elevator  displacement 

= function of aileron  displace- 
ment  and  aileron  command 

= inboard  elevator rate 

control  follower  response 

Weight 

1 x 10-l0 

1 x 

5.5 x 1 0 - l ~  

1 x 10-l1 

0 . 3 2  x 10 8 

0 

1 x 10 6 

1 x 10 4 

2 x 10 5 
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TABLE  4.  CLOSED-LOOP  PERFORNIANCE CONPPARISON 

Maneuver  load  control 
bending 7'0 change 

Gust  load--bending 
alleviation 

Percent  change--torsion 

Stability  Gain 6a 
8e 

Phase  6a 
8e 

Cr i te r ion  

< -3070 

< -3070 

c + 57'0 

> 1 . 6  

0. 7 - 0.. 8 

> 6db 

> 45O 

Case  4R 

-40% 

-35% 

-3 17'0 

2 ,13  

0) 

29 db 

0) 

W 

Case  5R1 

-4 1% 

-3470 

-2 77'0 

2 .16  

0,73 

m 

W 

W 

W 



The  equations  used  to  implement  the  compensator  for  this  example are 

given below. In this case the  input is two-dimensional  and  the  inverse is 

based on independent  step  inputs  in  each  channel.  The  equations are given 

for  a general  two-dimensional  output. 

The  equations  for  the  nominal states and  outputs are 

&. = (F + G K xi +G1 ui (41). 

w = (H + D K ) x i + D  ui  (42) 

1 0 1 0  

i 0 0 0  0 

where i = 1, 2 represents  step  inputs  on  the  aileron  and  inboard  elevators, 

respectively, and the  subscript o indicates  nominal  value. 

where F H and D. are computed from the  general  expressions  for F, 

H, and D in  terms of q and M with j = 1, 2 , 3  denoting  the  following 
j’ j’ J 

f’ CUf’ W r  
1 

specific  variations: 

j = 1 : qf = 1.0, uf = 1.0, = 0.3 
f 

j = 2 : qf = 1.0, “f = 0.75, q = 1.0 
f 

The  equations  relating  the  variational  outputs  that are to  be  outputs of the 

nominal  system a r e  

31 



i (i ,j)  = (F + G K ) I; (i,j) + G~ y (i, j )  
0 1 0  

( i , j )  = (H + D K C(i,j) 
0 0 0  

where y(i ,  j )  is the  inverse  input  defined  such  that s(i, j )  = %(i, j). An 

expression for y(i ,  j )  will now be derived.  This  derivation  will  assume  that 

the  number of outputs  equals  the  number of controls. 

A 

where 
- 
F = ( F o + G  K )  

0 1 0  

3 2  



Now y (i, j )  is to  be  such  that g(i, j) is identically  zero,  which is equivalent 

to g(i, j )  being  zero  since  x(i,  j),  x(i, j) ,  xi,  and u. are  initially  zero. 

Thus,  setting the left-hand  side of Equation  (51) to zero, we may  solve  for 

y( i ,  j )  obtaining 

A 

1 



K = N  -1 

Ne = 1, k = 1 , 2  ,..., 6 

the  output of the  compensator is 

A 

where  y is y~  and A = diag ( .  . . vii 2. . . ), -1 

In the first  attempt  to  implement  the  compensator,  the  first two responses, 

bending moment  and  torsion  moment,  were  chosen as the  outputs.  Unfor- 

tunately,  the transfer  matrix  from the inputs to these  outputs  has a zero  in 

the  right  half-plane.  This  caused  the  coefficient  matrix  in  Equation (53 ) ,  

namely [I - G (R G ) Ho]Fo, to  have  eigenvalues  in  the  right  half-plane 

leading  to  divergent  functions  y(i, j).  Rather than  implement  this  compen- 

sator with internal  instability,  it  was  decided  to  choose  the  aerodynamic 

surface  positions, ga and 6 e  as the  outputs.  This  choice  eliminated 

the internal  instability. 

-1 - 
l o 1  

i' 

Evaluation 

Experiments  were  conducted  to  examine  the  quantitative  performance of 

the  compensator.  The  parameter  variations  considered  were the three 

major  parameter  variations of Reference 1, i. e., dynamic  pressure, q; - 
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structural  frequency, W; and  the stability  derivative, M,. Dynamic 

pressure  variations  cause  changes  in  all the  aerodynamic  terms  and,  hence, 

most of the  elements of the  coefficient  matrices.  Structural  frequency 

variations  induce  variations  in a significant  subset of coefficients in the 

complete  model.  The  variation  in M permits  examination of the effect 

of variation in a  single  coefficient.  The  physical  motivation  for  treating 

these  variations is discussed  in  Reference 1. This  example  also  has p e r -  

mitted  examination of the effect of authentic  gust  disturbances. A single 

sample on a  five-second  interval  was  used to examine the gust  effect, 

W 

To examine  the  effect of unmodeled  dynamics,  the  compensator  designed 

for the 7th order  model was used  in  conjunction with the 15th order 

model.  Experiments  were  also  conducted  to  test  the  effect of the  design 

parameter, p. The  model  was  incorporated  in the compensator  for  all the 

C-5A experiments.  Another  experiment  conducted  tested the effect of re -  

cycling  the  time-varying  gains of the compensator.  These  gains  were 

computed off line  for  a  five-second  interval. 

In the  recycle  experiment,  the  gains  for  the first fourth of this  interval  were 

used  repeatedly  in  each  succeeding  fourth of the interval.  This  experiment 

was  motivated  by two considerations.  The  first is that  the  example is 

essentially  stationary and  that  infinite  data  lengths are impractical. The 

second is that  the  assumption of linearity of the outputs  with  respect to 

parameter  variations is less  valid  for  longer  time  intervals  than for  short 

ones.  This  phenomenon is shown  in Figure 9 .  The two components of 

g(2, l), the  output  of  the variational  equation  associated  with Mw for an 

inboard  elevator  step input, a r e  shown  along  with  the actual  increments 

3 5  
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in  the  outputs  corresponding  to 4 and 20 percent  variations  in M for  the 

same  step  input.  The  nonlinear  effect is clearly  more  pronounced  in  the 

later  part  of the  five-second  interval.  This  phenomenon is common  to all 

the  components of the 5's .  

W 

To  determine  the  effects of the  design  parameter, p, responses  to  gusts 

and  step  inputs of 0.02  radian  magnitude  in  u  and u2 were  computed.  To 

determine  the  effects of different  parameter  variations,  such  responses 

were  computed  for  independent  variations of individual  parameters and two 

cases of variations  in  all  three  parameters.  These  latter two cases were 

found to be  "worst  case"  variations  in  Reference 1. 

1 

Figures 10 and 11 show the deviations  from  nominal of control  surface 

deflections  in  response  'to  step  inputs  for p = 0,  0.5, 1 . 0 ,  and 3 . 0  with  the 

model  in  the loop  and a 20 percent  variation  in M The  reduction  in 

these  deviations  for  increasing p is consistent  with  the  theoretical  pre- 

diction. 

W' 

The  effect of recycling is shown with p = 1 in Figure 12 for  the  same  param- 

eter variation and a step  in  u  The  recycling  induces a severe  transient 

following  the s ta r t  of each  recycle.  This is due  in part  to  the  fact  that  the 

compensator output is zero  for  an  initial  interval,  and  in  part to  the effec- 

tive high gain  in  the  system following this  zero output interval. Although 

the  recycling  tended  to  deteriorate  the ga response, i t  improved  the g e  

response. 

1' 

i 

Figures 13 and 14 show  the  effect of changing  the  input.  The  inputs  for 

these  responses were chosen to be  a  positive s tep for 1 sec, followed by 
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a  negative  step fo r  1 sec, and  then  zero  for 3 sec. This type of input is 

more realist ic  for  an  aircraft .  

The  gust  response  for  this  parameter  variation is shown  in Figures 15 and 

16. The  effect of p is shown  in Figure 15, and  the  effect of recycling is 

shown in Figure 16. In Figure 15, the nonlinear  effect is evident  with 

better  performance  in the earlier  portion of the interval than  in  the later 

portion, In this  case,  recycling  seems to improve  performance  generally 

in spite of the  induced transients. 

Figures.17  and 18 display  the  effect of p for step inputs for the  so-called 

worst"  Case 1 condition.  Again,  the  trend is consistent with the theory. 1 1  

The  steady  state  relative  errors for the parameter  variations  considered 

are  summarized in Table 5 for  step  inputs.  The  trend is generally  in 

accordance  with  the  theory.  Exceptions do occur in cases  where one  of 

the ratios is negative. 

Table 6 presents the gust  response  statistics  for the same  parameter 

variations.  Here the mean  and  standard  deviations a r e  computed for  the 

time  series of numerical  integration on the five-second  interval for a 

single  gust  sample.  Again,  the  results  are  generally in accord with  the 

theory. 

The  final  experiment  consisted of testing the effects of unmodeled  dynamics. 

Figures 19, 20, and 21 present  comparisons of step  responses  for the 

7th and 15th order  systems with the three  individual  parameter  variations. 

Gust responses  for  these  cases  are shown i n  Figures 22, 23, and 24. The 
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Figure  17.  Response to u = 0.02 for qf = 1.25, 1 

f "f = 0.75,  M, = 0.80 
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Figure 19a. Case 4R and C a s e  5R1  Responses to u = 0.02 1 
for cf = wf = 1.0, M = 0.8 
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Figure 20b. Case 5 R 1  and  Case 4R Responses to u2 = 0.02 

for S = M, = I. 0, w f  = 0.75 f f 
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unmodeled  dynamics  have very  little  effect.  The  greatest  effect  appears to 

be  the  change  in  the gust  sample  caused by the  added  filtering. 

CONCLUSIONS  AND  RECOMMENDATIONS 

The  performance of the  compensator  generally  lives up to theoretical  pre- 

dictions,  There are four  major  areas  where  the  current  formulation is 

deficient  for  an  aircraft  flight  control  application  such as the  C-5A. They 

are 

1. 

2. 

3 .  

4 .  

Reduction of sensitivity of arbitrary  responses of interest, 

Application  to a stationary  system, 

Adequate treatment of nonlinear  dependence on parameters, 

and 

Severity of computational  requirements, 

In the C-5A example,  insensitivity of many  responses  and  particularly 

bending  and torsion  moments  are  desired.  Increases  in  these  responses 

were  caused  by  the  compensator  in  most  instances.  Presumably,  this 

would have been  avoided i f  they  were  used as the outputs, But in  this 

example, i t  would have required  an  internally  unstable  compensator.  The 

formulation  should  be  modified  to  include  insensitivity  to  such  responses. 

The  recycling was an  ad hoc attempt  to  modify  the  compensator  to  account 

for  stationarity. It was not completely  satisfactory;  alternative  formula- 

tions  should  be  considered. 
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The  nonlinear  dependence on parameters is significant  for the C-5A example 

and  the  theory  should  be  modified to encompass  this  phenomena. In this 

example,  this  effect  and  the  stationarity  effect  were  coupled  by  the  choice 

of inputs  used.  Other  inputs or additional  inputs  could  alleviate  this  coupling. 

The  computational  requirements  associated with the  implementation  were 

significant  for  the  seventh  order  design  model  with  the  limited  number of 

inputs  used  in  construction of the  finite  dimensional  inverse.  This was 

not a  major  concern  in  performing  an  evaluation of the concept,  but i t  would 

be for an  operational  system. 

Thus,  although  the  concept  lived up to expectations,  further  development 

is required  before the technique  could  lead to operational  systems  for  an 

application  such a s  the C -5A. 
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SECTION IV 

INSENSITIVE CONTROL SYSTEM  DESIGN VIA 

AN INFORMATION  MATRIX APPROACH 

The  technique described  in  this  section  was  developed by contract  consul- 

tant Professor David L.  Kleinman of the  University of Connecticut.  The 

technique is based on the  utilization of the Fisher  Information  Matrix 

which is a fundamental  feature of maximum  likelihood  parameter  identi- 

fication. In identification  applications,  it is desirable to minimize  in  some 

sense  the  inverse of the  Information  Matrix, o r  the  dispersion  matrix,  in 

order  to enhance  the  identifiability of a  set of system  parameters. With 

respect to  sensitivity,  given a se t  of responses, it was hypothesized  that 

minimizing  the  Information  Matrix itself would reduce  the  identifiability 

of system  parameters and, consequently,  the  sensitivity of the system 

response to variations  in  those  system  parameters. 

4 

The  evaluation of control  systems  designed with the  technique  consisted of 

a  preliminary  evaluation of the  effect of adjusting  design  parameters  on  a 

single  system  response of the C-5A test  example and a  full  system 

evaluation  for  the  15th  order  model  as  was done in  Reference 1. 

MATHEMATICAL  FORMULATION 

Consistent  with  the  assumptions  given  in  Reference 1, the system to be 

controlled  may  be  represented  by  a  set of linear  constant  coefficient 

differential  equations, 
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I 

j, = F(&) x + G u + G2r( - " 1- 

where 

x is an  n  state  vector - X 

u is an  n  control  vector - U 

1 is a scalar white  noise  with N(0, 1) 

a is an  n  parameter  vector 
P 

The  n  system  responses  may be represented by r 

r = ~ ( c u ) x  + D ( C Y ) U  (67)  - " " 
In Equations (66 )  and (67),  the matrices F, G G2, H, D have  the appro- 

priate  dimensions, As in  Reference 1, only F, H, D are  assumed to 

depend on the parameters, a. However, G and G2 can  also depend upon 

a, in  general. 

1' 

- 1 

- 

Since  the  parameters  are  regarded  as  uncertainty  factors  (as  opposed to 

absolute  deviations), the matrices F, H, and D about  any  operating  point 

a can  be  expressed  as - 
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D(ar) = Do f C (a. - l)Di - 1 
P -  

i= 1 

where F and D are matrices  at  a nominal  point, i. e., by definition 

where a. = 1. The  matrices Fi, etc., are the  gradient  matrices  evaluated 

a t  the  nominal  point, 

0' Ho' 0 

1 

H = gradi (H); D = gradi  (D) i i 

For  the  system  described by Equations (66)  through (68), the problem is 

to determine a feedback  control  law u = Kx such that the  system is "insen- 

sitive" to parameter  variations and satisfies representative  performance 

criteria. For this  application, latter cri teria are expressed  via the 

- - 

minimization of a quadratic  criterion 

where  the  weighting  matrix has been  selected to meet  specifications at a 

nominal  design  point.  The  minimization of J yields a nominal  feedback 

control 
1 

U = K X  - 0 -  

Of course,  this set of gains K has  been  determined  with  the  neglect of 

explicit  sensitivity  criteria. 
0 
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Use of the  Information  Matrix 

The  Fisher  Information  Matrix for the parameter  set  ~y and  the responses 

- r( t) in  Equation (67) is given (approximately)::  by 
- 

where T is the  observation  time o r  measurement  interval, S is a weighting 

matrix  to  be  discussed later, and a r / a a  is an n x p sensitivity  matrix 

with elements 
" r 

a ri (E) = KT 
ij J 

Thus,  the  i-th  column of the sensitivity  matrix  reflects the  sensitivity of 

r with respect to  the  i-th  parameter. - 

The use of the  information  matrix  for  optimal input design  to  enhance  the 

identification of unknown parameters  from the measurement  set r (assuming 

that  an  efficient,  unbiased  estimator of CY exists) is well known. 
- 

- 

This technology  has served as the  motivation behind  the present  work, 

The major points  relevant  to  the  discussion a r e  the  following: 

A 

::The approximation  used is to replace x by x, i. e. ,  we omit  the  Kalman 
filter innovations representation  in  theMaxrmum  Likelihood  formulation. 
This  greatly  simplifies the  problem  while  retaining  the  essential  param- 
eter  sensitivities. 
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1. The  inverse of the  information  matrix,  called  the  dispersion 

matrix,  gives a bound on  the parameter  error  covariance 

-1 A 4 E{((y - - i)/] 2 M = (Cramer-Rao  lower bound) - "  
.-. 

Here, - ~y is the actual  parameter  vector  and - CY is the estimate. 

The  idea  behind  optimal input design is to  find u - to maximize 

a metric on the  information  matrix  (e.g.,  det (M),  t r  (M), 

rnax (M)) o r  equivalently  to  minimize a measure of the 

dispersion  matrix.  The  net  effect will  be  that  one  can  place 

more  confidence  in  the  parameters  estimated  from  the  input- 

output  data. 

2.  Obviously,  maximizing t r (  M) would lead  to  increased 

sensitivity of - r ( t )  with respect  to the unknown parameters, 

inasmuch as M is a function of the output response  sensi- 

tivities. 

With respect to  sensitivity,  the  problem is  precisely the 

opposite  to  optimal  input  design, i. e. ,  to determine a control 

input such  that r( t )  is least  sensitive to parameter  variations, 

To  solve  this  "inverse"  problem, we seek the  "worst"  input 

from  an  identification  viewpoint, i. e. ,  one  that  makes  the 

parameter  set  as unidentifiable as possible.  Therefore,  it 

is natural to seek 'to  minimize a measure of the  information 

matrix. 

- 

Determining which measure to use  poses a problem. In the 

identification  literature,  it is reported  that  choosing  optimal 
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inputs  to  minimize  the  trace of the  dispersion  matrix  gives 

the  most  accurate  estimates of - a. Therefore,  it is conjec- 

b r e d  that  minimizing  the  trace, or weighted trace, of the 

information  matrix  should  be  the  "best"  criterion  for  choosing 

a desensitive  feedback  control. 

As the  observation  interval  T 3 o) in  Equation (72), the  norm 

of the  information  matrix  approaches  infinity.  Thus,  since 

we are dealing  with a steady-state  optimization  problem, i t  

is more  appropriate to consider  the  information  matrix per 

unit  time, or the  average  information  matrix, M,. In the 

steady  state, we have  approximately 

The  weighting  matrix, Sa is the  inverse of the measurement 

noise  covariance.  Since  the  problem  formulation  does not 

include  measurement  noise  (note  that  it  could), S will  be inter- 

preted  in  terms  of a "pseudo"  measurement  noise  injected 

onto r(t). We select S to be diagonal  with  elements 

s i = ( p a 2  )-l r i 
i = 1, ..., n r 

The  scaling of the  measurement  noises with  the  associated 

RMS response is a common  practice.  It is further  motivated 

by  the  form of a human's  "observation"  noise  in  man-machine 

studies.  The  noise-to-signal  ratio p is an  overall  scale 

factor;  thus, its actual  value is not of large  concern. How- 

(74) 
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ever, a value p = 0.01 7~ has  been  selected  from  previous 

experience  in  man-machine  systems to represent a nominal 

noise  level. * The  variances 0 a r e  picked a t  the  nominal 

point K and  held  constant at these  values  throughout  the 

analysis. 

2 
'i 

0 

In any  specific  design i t  may o r  may not be necessary  for  all 

responses rl, , . . , rn to be insensitive to parameter  variations. 

Thus,  it is desirable to  include  within M only  those  responses 

appropriate for desensitive  design,  The s. easily serve this 

purpose  through  setting si = o for  these  responses.  Thus, 

r 
W 

1 

2 
((  p CY for  desensitive r. 

1 

otherwise 

The  weighted trace of the  (average)  information  matrix is 

f 

L 

J 2  = t r [ W M  a3 ] = E  { i = l  ~ ~ ( 2 )  b ai .(.,} b ai 

P 
c 

i = l  

n 

c w. s (!5)2 } r 

j = 1  1 j  

where W is a diagonal p x p weighting matrix, W = diag (wi). 

The  weightings wi are selected to normalize the  information 

(75)  

~~ 

:::The case where the p. a r e  not all equal  could be considered. 
1 
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matrix at the  nominal  condition, i. e., a t  CY. = 1, and to keep 

the  analysis  in  terms of relative  sensitivity  (with  respect to 

the  nominal).  Thus,  it  has  been found convenient  to  select 

1 

where Ma is the  information  matrix  evaluated  using  the  nominal 

matrices F H D and  the  nominal  feedback  gains K The 

additional  scaling  factors y. can be selected to reflect 

0 

0'  0' 0 0' 

1 

1. The  relative  importance of LY. to the  design  problem 

as noted  through  experience or experimentation, or 
1 

2. The relative probability or frequency of occurrence 

of variations  in  the  parameter (Y. 
1' 

In the present  analysis we set 

yi = 1 i = 1,. . . , p  

to  indicate that all parameters  are  equally  important  and  equally 

likely  to  vary. 

Thus,  unlike  some  other  methods of desensitive  controller 

design,  the  choice of weighting parameters S and W is fairly 

straightforward. In the  next  section, J2 is appended  to  the 

original  performance  cost  functional J, given  in  Equation (70 ) .  
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Design Method 

When the system  parameters are subject to variation, a design  method 

based upon optimal  control  theory  involves  the following two steps,  either 

separately or in  combination: 

1. Selection of a design  point, i. e , ,  a parameter  set  CY at  -d 
which  the design is done, Note that ctd need not be  the 

nominal  point CY 
-0' 

2.  Selection of a set  of optimal  gains K at  the  design  point, 

Constraints  that  are  imposed by  the physical  system,  such as limited 

control  effort,  maximum  allowable  deviations,  etc. , are to  be  satisfied 

in  the selection  process. 

It would be  desirable to  achieve both objectives  through  solving  one  opti- 

mization  problem  with a generalized  quadratic  cost  functional.  The  cost 

functional  should  reflect  the  dual  goals of performance and  desensitivity, 

and so an  intuitive  choice is 

J = B,Jl + B,J, 

This is a weighted combination of performance and  sensitivity  ''costs. I '  

The selection of both gd and K could be  accomplished by solving a mini- 

max  problem,  viz, 

J:: = min  max J(u, K) 
K C Y  

- 
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However,  this  represents a problem of immense  difficulty. An alternate 

approach  has  been  suggested,  based on the  concept of “maximum  difficulty”: 

1. 

2. 

Determine  the  design  point a on  the  basis of a maximum 

difficulty  criterion.  This  criterion is dependent on  open-loop 

system  properties,  and so ‘yd can  be found independent of K. 

“d 

Determine K by  solving  an  ordinary  minimization  problem, 

This  two-step  procedure is feasible  from a computational  viewpoint.  The 

first step is discussed  in Appendix B. The  second  problem,  finding K, 

is the  subject of this  effort. But since (Y has not  been  selected,  the 

optimization  with  respect  to K will  consider a as fixed,  but  arbitrary. 

As a starting point we wi l l  pick CY = CY = nominal  point.  Thus, we seek 

“d 

“d 

-d -0 

K:‘f = arg  min J(gd, K) 
K 

Another  interpretation of the  above  cost  functional is that J seeks a K to 

minimize  performance at the  design point a The  second  term J2 seeks 

to enlarge  the  region about a in  which  the  gains K remain  useful.  The 

relative weightings p and B, have p = 1 and p2 chosen so that (after 

finding K::) the  resulting J does  not  exceed its minimum  value by more 

than a preselected  factor 1 + E, where 

1 

“d‘ 

“d 

1  1 

1 
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Thus, we trade off a fraction E'> o of performance  cost  for  desensitivity. 

Note that  this  trade-off  need  not  necessarily  be on J it could  be on 1; 

Consideration  has  been  given to including a third  term 

within the cost  functional J. This would  tend to minimize  the  deviations  in 

responses  from  the  original  design.  Also, i t  would add terms of the form 

( K  - K ), thereby  placing  constraints on the  control  gains  and  indirectly on 

the  control  effort. It is similar to  the  uncertainty  weighting  design of 

Reference 1, but in a more  meaningful  closed-loop  context.  The  equations 

that  result  from appending p3J3 have  been  developed  in  detail. But since 

they are more  complex  than  those  for J and J2 alone,  they wil l  not  be 

included  in  the following sections;  in  the following sections, we assume 

0 

1 

p, = 0. 

PROBLEM SOLUTION 

In this  subsection  a  closed-form  expression is obtained  for the gradient 

matrix a J / a K  that'will  be  used  in  the  subsequent  numerical  optimization, 

An Expression  for the Cost  Functional 

The  cost  functional J, Equation (77), can be rewritten to combine  the two 

terms J and J2.  The  result is 
1 
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where 

is the  closed-loop  sensitivity  vector at the  point - (Y = g d  = g o *  Defining 

= F + G I K  (80) 

as the  actual  closed-loop  system  matrix, 0 is seen to satisfy  the 

differential  equation 
“i 

6 = F o  + F .  x ;  i = l ,  . . . , p  
“i -i 1 -  

- 

where we recall  that G and G a r e  not functions of 0. 
1 2 - 

The  weighting matrices  in  Equation (79)  are 

Q = p (H+DK) ’ Q(H+DK) + B~ (H. +DiK) ’ Si(Hi+D.K) 
P 

i= 1 xx 1 1 1 

Q = p2( H+DK) ‘ S.(H+DK) oioi 1 

where  the  matrices 

h 
i 1 

S = w. S i = 1,. . . , p  (83)  

The  state  vector, x, and  sensitivity  vectors (5 can  be  combined  into  an 

(n  f 1) nx augmented  system. Defining 
- “i 

P 
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XA = L-5, Ell 9 '  * l  0 I '  P 

as the  augmented  state,  the  resulting  system  equation is 

where 

FA - - 

F o . . .  . 0 

F 2  O F 
- 

G2 
0 

0 
- 

It is important to point  out  that  this  augmentation is done purely for 

analytic  simplicity.  Fortunately, i t  will not be  necessary to solve  large 

dimensional  linear (or nonlinear)  matrix  equations  in  the  ensuing  opti- 

mization  process. 

In terms of x the  cost  functional J can be written  as -A, 

where 



&A 

. .  
0 .  

Note that  there  are no cross-terms between 0 and We define i j' 

C C C . . . c  xx xol x02 

C 

0 0  
P P  

as  the covariance  matrix of the  augmented  state, 

It is a full matrix with 

C = E{x x/] xx " 



Using  the  cyclic  property of the  trace  in  Equation (85 )  and  substituting 

Equation (86) yields 

J = tr [QACA] (88) 

or, equivalently, 

Incorporating  Equation (90) into  Equation (88)  and  manipulating terms  gives 

J = t r  [LA G2A G 2 i ]  

where 

L* = J0 O0e F i t Q A e  F t  A dt 

satisfies  the  linear  equation 
I 

FA LA + LATA +QA = 0 

Equation (91)  is better to use  in the analysis  'than is Equation (88) since both 

QA and CA in  Equation (88) depend  on K, whereas  only L in  Equation (91) 

depends on K. 
A 

Equations (91) and (92)  may be further  simplified  by  investigating  the  special 

block  structure and form of L A: 
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L '  L 0 . . . o  

L '  0 L 

xO1 

x02 O2=2 . 

L '  0 x0 
P 

L 
0 0  * .  P P  J 

It is easy  to show,  by  expanding  Equation (92), that  the  cross-terms 

L = 0. The  equations for the  nonzero  components are 
0.0- 
1 J  

O = F L  + L  F + Q  +F.'L 
I 

XOi XOi XOi 1 0-0. 
i = 1,. . . , p  

1 1  

I P 
O = F L  + L x x F + Q  + ( L   F . + F . ' L '  ) xx xx XOi 1 1 XOi i=l 

(93b) 

(93c)  

then for h o i ,  
and  then for Lxx. The  matrix L is all that is xx 

needed  in  evaluating J because of the sparse form of G Thus, from 2AG2'A' 
Equation (9 1 ), 

*Note L - wi 
" L so that  only  the  equation for 0. need  be  solved. 

0.0- wj 0.0 1 1  ~j 1 
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J = tr [L G 2 G i ]  xx ( 9 4 )  

The  sequence of lower  order  matrix  equations  to  compute  the  covariance 

terms (62)  and (63 )  is given  by 

0 = 6 2  + C  I?’ +CxxF: i = l , , .  . , p  
x0i XOi 

(95b) 

The  optimization  problem is therefore to find  the  constant  gain  matrix K:: 

to  minimize t r  [L G G ‘I (at  the  nominal  point IY = (Y ), such  that xx 2 2 -d -0 

Note that  this  approach  constrains  the  control  u(t) to be of the form - 
u(t)  = K x ( t )  - - 

There is no feedback of the  sens,itivity  vectors (Y a s  in  the sensitivity 

vector  approach. 
“i 
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Gradient  Expressions 

It is not  possible to find 

mize J, except when B 2 

a  closed-form  expression  for  the  gains  that  mini- 

= 0. For this  reason,  the  optimization wi l l  be 

approached  via  some  form of gradient  algorithm.  Closed-form  expressions 

for the gradient  matrix b J / b K  will be of great  advantage in this process, 

since  numerical  evaluation of gradients would  be extremely .time-consuming. 

The  gradient V K J  = b J / a K  is evaluated  using  a  technique of Kleinman  for 

derivatives of trace functions! From  (93c), the first order  variation in 

L to a  change K --4 K + 8K is (note  that F is a function of K), xx 

where 

and, 

for i = 1, . . . , p. The first  order  variations in the components of Q  a re  

given by 
A 
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8QXX 
= e,[ bK'D'Q(H + DK) + (H + DK)  'QDbK] 

(9 7a) 
P 

i= l  
f p2 [ dK'D.' S.(Hi + DiK) + (H,. + D.K) 'SiDi8K] 

1 1  1 1 

8Q0. O 
= p2 [ 8K 'D 'Si(H + DK) + (H + DK) 'Si DbK] 

1 i  
(97c) 

The  matrix is the  closed-loop  system  matrix which is required to  be 

stable  for  any  choice of K. Equations (96a)  through (96c)  can  therefore 

be  written  as  equivalent  integral  expressions, 

where a similar  expression  for gL can  be  written  directly  from 

Equation  (96a). 
xx 

Since 8J = t r  ,[8LxxG2Gi], we substitute  for 8L its  integral  expression. 

Substituting  further  the  integral  expressions  for 6L and 6Lx , using 

the  cyclic  properties of the trace and  Kleinman's  lemma, one objains, 

after  tedious  manipulation, 

xx 

O i 0 i  6 0. 

VKJ = 2G'L C + 2p1D'Q(H + DK)C 1 xx xx xx 

P 
+ L ' C   + L  c 3 

m i  XOi Diui 0.0. 1=1 1 1  
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D 

+ D’S.(H + DK)C + D.’S.(H. + D.K)C ] 
1 (5- (5. 1 1  1 

1 1  
1 xx 

Equation  .(98) wil l  serve  as  the  basis of a gradient  algorithm to  minimize J. 

The  computational  requirements  to  compute V J and J a t  a given K are 

now the  major  issues. 
K 

COMPUTATIONAL ALGORITHMS 

This  section  describes  the  numerical  schemes  for  computing J, VK.J, and 

M for  a  given  feedback. 
01 

General  Overview 

In order  to numerically  evaluate the cost  functional J we must  solve ( p  + 2)  

linear  matrix  equations  (93a)  through (9312). To  evaluate  the  gradient 0 J, K 
an  additional (2p  + 1) equations  need  be  solved  for Cxx, C , and C 

x(5: O: O: 

as in  Equations  (95a)  through  (95c). Note that  the cross-  

correlations  C i # j are not  needed  to  compute v . Examination of 

these 3p + 3  equations  reveals  the following: 

I I 1  

O i  Oj d 

1. All  equations  involve or  F.’ Half of the  linear  equations 

are adjoint  to  the  other  half. In particular,  Equation  (95) 

is adjoint  to  Equation  (93). 
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2. A total of p + 3 equations  have  symmetric  solutions,  whereas 

the  other 2p equations  for L and C have  nonsymmetric 

solutions. 
XDi xoi 

A significant  reduction  in  computation  time  can  be  brought  about  by several 

modifications to the  linear  equation  algorithm of Bartels and Stewart.  This 

algorithm is well  suited to  the  efficient  sequential  solution of 

A‘X+XA = C 
i 

with  different  right-hand  sides  Ci.  The  existing  algorithms  and  available 

programs  are  geared  for  symmetric Ci, and  hence,  symmetric X. By a 

slight  modification a skew-symmetric C can  be  handled a s  well. Thus, 

the two major  objectives  for  sensitivity  design are 
i 

1. To solve  Equation (99)  when C. (and  therefore, X) is non- 
1 

symmetric, and still take  advantage of the  saving in computer 

time and  efficiency  afforded by a symmetric  problem, and 

2 .  To  solve  the  adjoint  equation 

A X + = ’  = C 
i 

using a computer  program  written to solve  Equation (99) .  

Modifications  to  the  Bartels  -Stewart  Algorithm 

(100) 

The  Bartels-Stewart  algorithm  for  solving  Equation (99 )  in  the  symmetric 

(or skew-symmetric)  case first reduces A to an  upper  Schur  from  via  an 

orthogonal  transformation Q. The  resulting  matrix A is of the form 
N 
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A = Q ' A Q  = 
N i A1 1 

N 

0 

0 

where  each  submatrix A.. 
N 

11 

ru 

C = Q ' C , Q  = i 

and 

N 

X = Q ' X Q =  I 
N 

xll 

%2 1 

N 

X 
P l  

12  

is at  

N 

c12 

c22 
N 

x12 

%22 

N 

. .  

then  Equation (99 )  is equivalent 

A ! X + X A = E i  
-nl .Few 

. . .  ?i 

. . .  x 
1P 

2P 

* . A  
- 

PP 

most a 2 x 2 

- 

to 

N . . c  
1P 

. . c  u 

2P 

w 
C 

PP - 

X 
rv 

PP - 

If 

(101) 

N w 

Since  the  partitions of C. and X are conformal  with A, expanding  Equation 

(101) gives 

N 

1 

a = 1 , 2  ,..., p; k = Q  ,... s p  
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These  equations  can  be  solved  sequentially  for X1 XZ1.. 
. . ..X - we then f i l l  in  the  upper  part of X by  symmetry 

N N N N 

x22J * J X 
N N PI' 

PP. 
N N x = x& 

.& 

or skew-symmetry 

as the case  may  be.  The  "mini-systems" of Equation (102) a r e  solved  via 

a simple  algebraic  equation  program.  Thus, with 2 calculated,  the 

solution X to  Equation (99)  is 

Once  the real  Schur  form of A and Q have  been  calculated,  they  may  be 

saved  and  reused  to  solve  the  same  equation (99)  with different  C..  They 

are also  used  in the iterative  refinement of the  computed  solution.  This 

is the  forte of the Bartels-Stewart  algorithm. 

1 

Solution of the  Nonsvmmetric  Case 

Any general C. can  be  written a s  a 

skew  symmetric  part C where 
1 

(2) 
i 

sum of a symmetric  part C and a 
i 
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For a general  matrix C the  linear  equation (99)  can  be  solved  by  adding 

the  solutions of the two equations 
i' 

Thus, X = X(1) + X(2), where we note that X") is symmetric and X , is 
skew-symmetric. 

( 2 )  

Once an  upper  Schur  form of A is available,  say  from a previous  solution  of 

Equation (99) ,  we  can call the  computer  program twice  and  solve for  a non- 

symmetric  solution.  The  time  required to  solve  the  linear  equation (99)  

once  the  matrices A and Q have  been found is about 40 percent  of  that 
N 

required to solve the equation for the first time,  Therefore, a nonsym- 

metric  solution is obtained in about 80 percent of the  time  needed to solve 

the  equation  once. 

Solution of the  Adioint Case 

The  adjoint  equation (100) could  be  solved  rapidly if somehow we could 

obtain A' i n  upper  Schur  form  from A, Consider  Equation (100) where 
H N 

Q and  the  upper  Schur  form are given. Pre- and post-multiply  this 

equation by Q' and Q, and  note  that QQ = I gives 

Q '  A Q (&'X Q) +(&'X Q) Q'A'Q = Q'Ci Q 
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o r  

where A '  is in  lower  Schur  form. Now we need A' in  upper  Schur  form 

to use a program  written to  solve  Equation (99 ). The  matrix x' can  be 

transformed  to  upper  Schur  form by  applying a symmetric,  orthogonal 

transformation T to  Equation  (104)  where 

N N 

0 I 
P r e -  and  post-multiplying  Equation  (104) by T gives 

TAT(TXT) + (TXT)TA'T = TC.T 
1 

o r  

X;Z1 + X ~ A ~  = TE.T N H  

1 

where A is now in  upper  Schur  form as required. A summary of the 
c.. 

1 
steps needed  to  solve  Equation  (100) is as follows: 

1. 

2, 

3 .  

4. 

5 .  

Transpose A .  
N 

Obtain = T x' T, so  is x' with its  rows and  columns 
1 1 

written  in  reverse  order. 

Obtain T Ei T. 

Solve for X using  the same  algorithm as for Equation (99). 

Obtain X = T( Q z1 Q I )  T. 

N 

1 
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A general-purpose  computer  program, AXPTA, has  been  written  to  solve 

the  linear  matrix  equation  via  the  Bartels-Stewart  approach.  It  has  the 

features to solve  the  symmetric,  skew-symmetric,  and  adjoint cases 

taking  advantage of previously  obtained x and Q. 

Computational  Requirements fo r  J, v d ,  and M 
aD 

As noted  above,  p + 3 symmetric  and 2p nonsymmetric  solutions  are  needed 

in evaluating J and k J .  Taking  advantage of the  algorithm  modifications, 

these  symmetric  equations  can  be  solved  in  an  "equivalent"  computational 

time of 1 + 0.4(p + 2 )  = 0 . 4 ~  + 1 .8  linear  equations.  The  remaining 2p 

equations  with  nonsymmetric  right-hand  sides  can be solved  in  the  equiv- 

alent of 2p x 0 . 8  = 1 . 6 ~  linear  equations.  The  total  computation  time is 

then M 2. Op + 1. 8 linear  equations.  Thus, to obtain J andv J for  p = 3, 

we need  solve  the  equivalent of roughly  eight  linear  equations.  This is 

comparable to the time  required to solve  one  (n  -dimensional)  Riccati 

equation.  Thus,  the  computations of J and its gradient  (at  each  iteration) 

are not excessive. 

K 

X 

The  unit  time  information  matrix M is not required  explicitly  in  the  opti- 

mization  algorithm. However, it is useful to  monitor M and  the disper- 

sion  matrix 

OD 

co 

as the  algorithm  proceeds  through  the  iterations  to see how the uncertainty 

regions for a. increase.  Certainly, one would wish  to  compare M o r  DM 

a t  the  optimal  point  with  their  initial  values at K In addition,  the 
1 (D 

0' 
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(initial)  diagonal  elements of M a0 are used  in  forming the  weighting factors 

w. in  Equation  (52). 
1 

The p x p information  matrix M is 
m 

The  response  sensitivities  are 

e 
a ai 1 
- = (H. + DiK) X + ( H  + DK) cy - "i 

Substituting  these  into  Equation (107) gives  for the ij  element of M m' 

( M  ) . .= t r [ (H+DK) 'S (H+DK)C  + (H.   +D.K) 'S (H.+D.K)C 
O3 1J 0.0- l j  

1 1 J J xx 

+ (H + DK)' S (H. + D.K)C + (H. + D.K)'S(H + DK)C' 3 
J J x0i 1 1 xu. J 

Notice  that Cxx, C and C will  have  already  been  evaluated  while 
XOi 0-0 i i  

computing %J. Therefore,  it is only necessary to determine C f o r  

i f: j from  the Equation (95c). Only  the terms  for j > i need  be 

computed  because of symmetry.  This  requires  solving  an  additional 

p(p - 1 ) / 2  = 3 linear  equations, all with  the same  system  matrix F. 

O i  0j 

Iterative  Algorithm  for  Finding K:: 

Returning to  the  optimization  problem  for KJf., two gradient  algorithms are 

proposed in this  section.  The  first  algorithm was  tried  first,   primarily 

to  check  the  validity of the overall  approach to  the sensitivity  problem.  The 
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second  method is based on the  conjugate  gradient  algorithm of Fletcher- 

Reeves. As  noted earlier, the  computer  programs  solve  for K9$ at a 

given  design  point o! assumed  here to be  the  same as (Y - d’ - 0‘ 

Successive  Substitutions  Scheme 

This is a simple  iterative  scheme  that  has no proven  convergence  prop- 

erties. It is motivated  by old algorithms for the  optimal output  feedback 

problem.  The  idea is to find a set  of gains K (’ -+ ’) that would result  in 

%J = 0. The  choice is based on matrices  computed  at  iteration a. The 

algorithm is as follows: 

1. 

2. 

3 .  

4 .  

5 .  

Set 1 = o select  an  arbitrary  initial  (stabilizing)  gain K . 
Usually K(O) = K Set J 

(0) 

(-1) - 
0’ 

- =J. 

Check  stopping  condition I J ( a )  - J(’ - ‘’1 < TOL 

If satisfied,  stop. 

Compute Cxx, C a c  and the gradient V . J  . ( a )  
XOi OiOi J 

Compute  the  gain  increment AK‘’) that would make 

-v J(’ + ’) = 0 assuming all other  matrices  remained  con- K 
stant. As seen  from  Equation (98) this is a near-impossible 

task.  Thus,  the  gains  K  in  the  summation  term are set  to 

K”); i. e. ,  they are fixed,  and we find 
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initially. If the  cost J (' + ') does  not  decrease, a smaller 

step is taken  by  reducing b. 

7. Set ,e = a + 1 and  return  to  Step 2. 

The  above  algorithm is essentially a successive  substitution  scheme  for 

solving  an  equation of the  form  x = f(x). Such  a  scheme is convergent 

only i f  the  slope of f is < 1. Thus,  the  given  algorithm is expected to 

converge when the  optimum  gain E: is close  to the initial  gain K . 
Unfortunately,  the  convergence  rate of this  method was found to be very 

slow,  with  considerable  oscillation  in K when near the optimum.  Con- 

vergence, to less than 1 percent error, was usually  attained in 10 to 

18 iterations. 

(0) 

Coniugate  Gradient Method 

A conjugate  gradient  scheme was picked as  an  alternative to the  above 

method.  The  steps are as outlined: 

1. Set 4 = o select  initial  gain K'O). Usually, we set 

K ( O )  = K Pick M = p as recycle  index. 
0' 

2. Compute J . (0) 
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3 ,  Compute  the  gradient V J(’) at  the  current  gain K(’)* If J 

is too small,  then  stop. 

Normalize s(’) so  that 11 s( ’) 11 = 1. 

5 .  Compute  the  current  step  size  ba  using a one-dimensional  search 

bR = arg  min J [K”) + b s ( a ’ ,  
b 

This is done via a quadratic  interpolation  scheme. 

6. Compute new gains 

+ I) = K(R) + bRsR 

and  the  cost J ( a +  1) 

7. Check  convergence  tests .. If passed, then stop. 

8 .  If a e M set  a = 4 f 1. Otherwise,  set K (O) = K ( a + l )  , a = o  

Go to Step 3 ,  
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The  convergence  rate of the  conjugate  gradient  method  has  proved 

superior to the  first  noted  algorithm.*  Typically,  three  to  eight  iterations 

have  been  needed  for  convergence, CPU time on 360165 of about 6 to 7 min- 

utes.  The  critical  parameter  for  convergence is the  initial  guess  for  b  in 

the  one-dimensional  search  (Step 6 ) .  The  present  ad hoc guess is 

( a)  Min Abs element  in K 

Max Abs  element  in K 

( a)  
( a)  

b = l l K I I  
2 

PRELIMINARY EVALUATIONS 

The  15-state  residualized  model of the C-5A longitudinal  dynamics as 

described  in  Reference 1 was used for  evaluation  purposes.  The  response 

vector  used for the  design of the  nominal  controller is ninth order  and is 

defined  by 

r = Bending  moment a t  wing root 1 

r = Torsion  moment  at wing root 2 

r = Bending moment  rate 3 

r = Torsion  rate 

r = Aileron  displacement 

r = Inboard  elevator  displacement 

4 

5 

6 

::A combination of the two algorithms to give AK") was  tried.  However, 
i t  gave  mixed  results and s o  was not pursued. 
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I ’  

r = Modified aileron  rate 

r = Inboard  elevator  rate 

r = Control  follower  response 

7 

8 

9 

The  weighting matrix Q used  in  the  quadratic  synthesis  design is diagonal 

with 

Q = { O . l E - 9 ,   O . 1 E - 9 ,   O . 1 E - 1 0 ,   0 . 3 2 E  + 8 ,  0.0, O . l E + ’ 7 ,  

0 .1E + 5, 0 .2E  + 63 

The  parameter p vector - a for  the C-5A example is 

where 

- qf = dynamic  pressure  uncertainty  factor 

@f = structural  frequency  uncertainty  factor 

Mw = stability  derivative  uncertainty  factor 
f 

The  design  process is conducted  at the nominal  condition, a. = 1. The 

gradient  matrixes F Hi, D. for i = 1, 2, 3 were  computed  numerically. 

They  are  assumed to  be constant within the range of parameter  variation 

1 

i’ 1 

The  sensitivity  reduction  problem  formulated  via  the  Information  Matrix 

approach  leaves  very  few  free  parameters to  be chosen.  This is by  design, 

since we have  elected  to  minimize the free  parameters in order  to mini- 

mize  the  number of design  iterations. As a  result, one  needs  only  select 
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1. Which of the  n  responses  are to  be  desensitized, i. e., r 
which responses  r.(t)  have si # 0, and 

1 

2. The  value of f12, giving  a  relative  weighting  to the sensitivity 

cost  versus the performance  cost. 

As a first step in evaluating  the  technique,  the  effect of varying p, on the 

bending  moment  response, r was  investigated. In other  words, 1' 

1 = '3 

= 0, j = 2,9. W.ls  were  set to  unity to reflect  equal  impor- 
1 

tance on all  uncertain  parameters. Note  that  the  weighted trace of the 

information  matrix  in this case is 

1 i = l  

As a  means of evaluating  the  effect of varying p,, a measure of local 

sensitivity  was  defined a s  

a. 1 

where the term r refers. to  the  bending moment  response at the nominal 

condition.  This is slightly in variance to the more  classical  definition of 
1 ,o  

sensitivity  which is given by 
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where p is the  correlation  coefficient  between r and - br at the  nominal 

point.  Hence,  the measure  used is proportional  to  the  more  classical 

definition. 

aa 

r 

cy 2 '  
Figure 25 presents a plot  of S versus p As can  readily  be  seen,  there 

is  a reduction  in  sensitivity,  particularly with respect to structural fre- 

quency  uncertainties. 

1 

The  effects of varying p2 were  also  ascertained with respect to J the 

performance  cost index, control  activity  measured  in  terms of aileron  dis- 

placement,  and  the  identifiability of the uncertain  parameters  measured in 

terms of standard  deviations of the estimates.  These  results are plotted 

in  Figures 26, 27, and 28, respectively. As expected,  the  results a r e  as 

1' 

follows: 

0 

0 

0 

Performance as measured by the  cost  index J increases 

with p2. 
1 

Decreased  sensitivity  requires  increased  control  activity. 

Uncertain  parameters are harder to  identify as p is 

increased. 
2 
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Since  the  sensitivity  measure  employed is only  valid  over  small  variations, 

a linearity  test was also  performed.  The  parameters cy. were varied 

independently  from -0.2 to 0 . 2  in steps of 0.05.  The  normalized  incre- 
1 

are listed  in  Table 7. The  results  are shown for parameters 1 and 3 only. 

For'a2, the  analysis  showed  that  the  correlation  between r and brl/ 

was very  small.  Thus,  although E ( 3  aa 7 is large,  the  effect of 

variations  in cy on the  actual  response is small.  As  seen  in  Table 7, the 

changes are  approximately  linear. 

1 cy2 

2 

TABLE 7. INCREMENTAL VERSUS LINEARIZED PARTJALS COMPARISON 

Parameter 
Variation 

AcYi 

0 .05 

0.10 

0.15 

0.20 

-0.05 

-0.10 

-0.15 

-0.20 

Actual 
Performance Change 

* O r  

r 
1 - 

1,o 

i=l  i =3 

0.031 0.015 

0.061 0 .031  

0 ,090  0 ,049  

0.1193 0 ,068  

-0,0327 -0.0137 

-0,0679 -0.0262 

-0.1055 -0.038 

-0.146 0 -0,0483 

"Predicted" Change 

'Or 

~. 

1 - 
a ai "";/.1,0 

i= l  1=3 

0.031 0.0142 

0.059 0.028 

0 ,086  0.042 

0 ,1111 0 ,056  

-0.0322 -0.0 144 

-0.0654 -0,029 1 

-0.1009 -0.044 

-0.135 7 -0.059 1 
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With  the effects of varying p2 established, a refined  design was  under- 

taken  and  evaluated.  This is discussed  in  the following  section. 

C-5A CONTROLLER DESIGN  EVALUATION 

As  discussed  in  the  preceding  section,  the  Information  Matrix  design 

technique was formulated  to  limit  the  number of free parameters which 

the  control  system  designer  must  manipulate.  As  presented  here,  the 

designer  has  freedom  to  vary  the  scalar  term p which weights  the  sen- 

sitivity  reduction.  The  designer  also  may  select which of the system 

responses  he  wishes to desensitize by manipulation of the  binary  variable 

s The  effect of varying p, on one system  response was discussed  in 

the  previous  section.  This  section wil l  discuss the  effect of varying  both 

p2 and si with  the  purpose of obtaining  an  insensitive C-5A control 

sys tem. 

2 

i' 

Design  Approach 

In order to limit the freedom on selection of p2, two additional  constraints 

were  imposed: 

1. 

2. 

The  value of J of the  insensitive  controller  must  be less 

than 1 . 2  times  the J of the  nominal  controller. 
1 

1 

Aileron  and  elevator  control  activity for the  insensitive 

controller  must  be less than two times  the  controller  activity 

of the  nominal. 
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With these  constraints  imposed,  computer runs were made  to  study  the 

effects 

1. 

2 .  

3 .  

4. 

of 

Sensitivity  weights on rates 6 f? to  aid  in  desensitizing 

the  bending  and  torsion  moment  responses, 
1 3  1 

Weighting aileron  control  responses r to  keep  control 

effort  from  rising too  rapidly, 
5 

Weighting the  controller  follower  response r as an  attempt 

to desensitize 
9 

spa  Gsp, and 

Various  choices of p2. 

A total of 15 different  cases  were  studied,  including  the  nominal.  The 

cases, 

1. 

2 ,  

3. 

4. 

5 .  

described in Table 8, may be  grouped  into  five  categories: 

Variations  in B Case 2A, 2B,  2C; Case 3,  3A, 4; Case  7,8 2: 

Sensitivity  weights on B TI:  Case  7,8 1’ 

Sensitivity  weight on 6a: Case 2A-2F, 3, 3A, 4 

Sensitivity  weights on I )  Case 2A-2F, 6 cF: 

Variations  in  the  (pseudo)  noiselsignal  ratio (p on 8a to 

study  more  closely  effect of control:  Case  2C-2F. 
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TABLE 8. PARAMETER  ESTIMATE STANDARD  DEVIATIONS  AND  OTHER 
PERTINENT  INFORMATION  FOR  DIFFERENT GAINS 

' 1)iagonal I 1 elements  lnlt ial  Final noise  weight  weights weigh16 responses 

Lower  Bounds On  ti^^ or 
r a t io   on  on on on '3 wllh K: and KO 

Signall  Any  Any  Any 

wilh 
( % p s e u d o 5  lollowed response  i . e . ,  B - I J~ eli lpsoid a1 t r ace   pa rame te r s   pa rame te r s !   e l l l p so ld  a1 nominal 

uncerlalnry on of S - D  of , of  S-L) of ' uncerlainly K" K1 conlml ,  r conl ro l   conl ro l  and r4 

Run # 1, noise) response  i . e . ,  r5 and y r2 K O  r l  KO (Halio) K f x  l o 7  I of M, i wllh KO , w u h  K'Z K O  x lo1 gain K O  02 

I 

1 NA  NA NA NA 1 . 0  1 .0  8 8 . 7  NA N A  NA NA I NA NA NA 
( N d n i n a l )  (1.0) 

2A 0.08 0,0431 538.2 0.4 
(1 .0)  (1 .026)  0.155 I 
31.8 

0.95 0,1436 49. 1 
Yes Yes  No 0,944  0.977 91.0 8,035 3.36 0 0499 

116.2 0.40 , 0,0933 0. 1146 

120.8 0. 1269 , 0.42 ~ 0.0913 
2B 

(1.0) 
31.8 Y e s  Yes No 0,939 0,940 93.6 12.518 0.0590 , 4.82 0.09 , 0.0423 559.6 0.6 

50.8 1.00 0.1409 ( 1 . 0 5 5 )  
' 

0. 1512 

2C 4.82 0.0473 
0.42 ~ 0,0913 120.8 
0.09 : 0,0423 559.6 0.5 6.770 93.6 0,952 0.924 ~ No ~ Yes ~ Yes ~ 31.8 

0.1110 

50.8 

0,1229 0.64 1 0.1155 78.0 

(1 .0)  (1 .055)  0.1571 1.00 0,1409 

21) Yes  Yes  No 0,943 0.940 92.1 16.434 10.52 0.0670  0.0634 0.20 253.6 0.5 
(10.0) 
3.18 

40.8 (1.038) 0. 1569 0. 1432 1.00 
I 1  I I I I I I I I 1 1 

87.0 
0 . 0 5 5 7  0,149 325.2 0.5 2E 
0,1086 0.558 

13.2 
0 1593 

Yes Y e s  No 0.949 0.947  91.72 15.937 
0.1443 1.0 48.8 

5.79 0.0630 
0 . 1 2 9 8  0.1036 0 , 5 5 8  94.9 

0.0513 0.149 381.8 0.5  2F 

0.1548 
7.47 0.0583 

0 . 1 4 4 8  1.0 4 8 . 6  

0 .1177 
11.21 

(3.0) 
10.6 Yes  Yes No 0.955 0.954 90.38 

( 1 . 0 2 0 )  

(1.034) (2.0) 

104.9 

(1 .0)  
31.8 No Yes No 0,910 0.937 95.4 23.49 4.90 0.0568 

0. 1372 
0.0449 0.09 497.7 0.6 3 
0,0989 0.40 

41.2 

31.8 
0. 1995 

No , Yes No 0.9026 0.9126 94.47 38.90 
0. 1579 0.95 41.2 

4.90 0.0688 
0. 1448 0,0989 0.40 104.9 

0.0440 0.09 497.7 0 . 7  3A 

0.1968 0 . 1 5 7 9  0.95 (1 .0761 

(1 .065)  (1 .0)  



TABLE 8. PARAMETER  ESTIMATE  STANDARD  DEVIATIONS  AND  OTHER 
PERTINENT  INFORMATION FOR DIFFERENT GAINS (concluded) 

Oiagonal 
elements 
of I% Weights  
w i t h  
nominal trace 

on 

gain ICo of M, 

Lower Bounds On 

Initial 

with K O  

Any Any 
weights weight  

on on 
control control 
response rollowed 
i .e . ,  r5 response 

Signal/ 
noise 

control, rs 
ralio on 

(% pseudo 
noise) 

1 59.8 0.66 
169.3 0.20 
40.3 0.60 

0. 1385 0. 1452 

0,0796 1 0,0921 I 15.03 150.78 190.1 0.1632 0. I780 (1 .019)  
0.931 10.967 1 No 1 No 1 No NA I 

6 25 54 13. 14 0.0824 0.0603 0 . 2 0  280.6 0 . 2  NA Y e s  No  No 0.958 0.960 90 0 
41.5  (1.0181 0. 1573 0. IS55 0.80 

7 0 , 0 2 8 1  0,043 1432.8 0.2 NA No  No Yes 0.955 0,920 91 2 1 . 2 5 9  0 689 0 . 0 3 3 1  
127.2 0 1006 0 0942 0 800 

101.6  0 1065 0,0992 0,700 (1.027) 

127.2 

0. 1484 0.1385 0 .612 5 9 . 8  

NA 
0. 1036 

No  No Yrs 0.978 0.945 89 5 0.960 
0.0903 0,700 101.6 

0 689 0 0306 
0.0978 

0,0281 0.043 1432.8 0. I 8 
0 0042 0,800 

I1 0009) 

9 
0.  1864 

NA No No No 0.041 0,922 9 1  3 70.0 
0.1692 0,800 40.3 

15.03 0.0994 0 , 0 7 9 6  0,237 169.3 0.3 
( 1 . 0 2 9 )  



The  performance of the  resulting 14 controllers  plus  the  nominal  controller 

are presented  in  Table 9 .  The 14 controllers were then compared to deter- 

mine  which  one would be  evaluated  with  the  design  criteria  defined  in 

Reference 1. The  Case 3A controller was chosen  based on conditions  that 

1. All  the  design  specs were satisfied  plus  the  additional 

imposed  constraints on J and  control  activity,  and 1 

2. The  identifiability of the three  uncertain  parameters 

(Cif, W f a  MW ) was reduced  the  most.  This was measured 
f 

by  the  volume of the uncertainty  ellipse  (which is approxi- 

mately the determinant of the dispersion  matrix)  and  the 

standard  deviations of the  uncertain  parameters. 

The  gains  for  Case 3A are given in Table 10. With respect to  the  other 

variations  that w e r e  investigated,  it was  found that 

1. Weighting  the  control  follower  response  offers no advantage. 

This is to be  expected  since  the  control  follower  response 

is only  valid  at  the  nominal  condition.  Its  purpose is to 

achieve a specific  control  configuration (i. e. , 6ec = 0.5q) 

which at the  nominal  produces  desirable  short  period 

frequency  and  damping  characteris tics. 

At other  than  the  nominal  condition,  the  control  follower 

response will  not  produce  the  described  short  period 

frequency  and  damping  characteristics. 
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TABLE 9 .  FEEDBACK  CONTROLLER  PERFORMANCE--CASE 4R 
NOMINAL (qf  = 1.0,  af = 1.0, M = 1.0) 

Wf 

Surface  0,0193 
Activity 

‘a 

‘e 0 . 3 1 1  

0 . 0 2 0 7  0.0312 

0. LOO 0 .  146 

0 .161   0 .116  

0.384  0 .418 

Run Number  

2C 3 2F 2E 21) 

0 .687   0 .676   0 ,683  0 . 6 8 8  0.618 

0.100 0,0993 0 .104   0 .104  0 . 1 0 3  

2 .22   2 .27   2 .50   2 .23  2 .26  

0 . 6 8 2   0 . 6 8 5  0,831 0 , 7 2 6  0 . 7 2 8  

0 .0211   0 ,0258   0 .0249  0 .0213 0 ,0289 

0 . 1 3 0  

0.184  0 .174  0 ,169 0.112 0 .  115 

0 . 1 1 8  0.129 0.117 0.162 

0 .378   0 ,409   0 ,429   0 ,382  0 .361  

3A I 5 6 

0 . 6 7 1  0.692 

0. 106 0 . 1 0 5  

2.24  2 .24 

0 . 1 3 1   0 . 7 3 8  

0 .0275 0.025.  

0.162 0 . 1 5 8  

0.169 0. 164 

0 .416  0 .379  

7 

0 .663  

0 .  104 
- 
2.29  

0 . 1 4 3  

0 .0303 

0 .179  

0 .112  

0 .441  - 

8 

0.681 

0 . 1 0 7  
- 
2 . 2 2  

0 . 7 3 1  

0 .0213 

0.159 

0.163 

0.404 - 

9 

0 .672  

0.106 
- 
2 . 2 1  

0 . 7 4 1  

0 .0282 

0 .172  

0.169 

0 .432  - 



TABLE 10. GAIN MATRIX FOR RUN #3A 

11 -1.57563-05 12 5.57473-06 13 3.25493-05 14 2.08833-05 15 -2.01623-04 

16 -7.04193-04 17 -2.13813-01 18 1.12573-03 19 2.53133-05 110 -2.48733-04 

111 8.93343-05 112 -8.56903-06 113 -1.93573-04 114 1.30013-04 115 -4.59463-07 

21 1.97123-04 22 5.03063-04 23 -2.87243-04 24 2.69913-04 25 4.72233-04 

26 -6.25143-03 27 3.40403-03 28 -1.52263-01 29 6.74373-06 210 6.78473-04 

211 -1.23343-03 212 -3.11753-05 213 4.47203-04 214 8.47163-04 215 1.39363-03 



2,  There is no significant  change  in  system  response as the 

signallnoise  ratio on 8 is varied, a 

3.  The effect of including B1 and T in  the  sensitivity  computa- 1 
tions  appears to  have little effect on the  resultant B and  T 

responses, 
1 1 

Design  Evaluation 

The  Case 3A Information  Matrix  controller  was  evaluated on the 15 -state 

Case 4R residualized C-5A model at the  six  evaluation  conditions.  These 

conditions,  chosen  in  the  Reference 1 study, a r e  as follows: 

1. Nominal  condition: cy = (1.0, 1.0,  1.0) - 
2. Worst  Case 1: - cy = (1.25, 0. 75, 0 .8)  

3 .  Worst  Case 2: - CY = (0.5, 1.0, 1 . 2 )  

4. Independent Variation 1: - cy = (1.0, 1 . 0 ,  0 .8)  

5 ,  Independent  Variation 2: - cy = ( 1.0,  0.75, 1.0) 

6 .  Independent  Variation 3: CY = (1.25, 1 .0 ,  1 .0)  - 

The  performance  of  the  Information  Matrix  controller is tabulated  in 

Table 11 at the  six  evaluation  conditions.  Figures 29 through 33 graph- 

ically  portray  the  tabulated  data  for  each of the  design  specifications  versus 

the  performance of the  nominal  controller. 

The  three  criteria  defined in Reference 1 were used  for  evaluating  the  Infor- 

mation  Matrix  controller.  The  criteria  may be briefly  described as follows: 
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TABLE 11. INFORMATION  MATRIX CONTROLLER  PERFORMANCE 
EVALUATION  MODEL--CASE 4R 

Specification 
Description 

I 1 Nom 
- 
qf =1 .0  

Cr i t e r i a  UI =1 .0  

Mw = 1 . 0  
f 

Maneuver  Load 
% Change B I < -30% I -45.4% 

Gust  Load B 
Alleviation 
70 Change T 17 1.5  -1 2.36 
Handl ing  radlsec 
Qualit ies 

Stabil i ty 
Margins 

Gain:  ai leron 
e leva tor  '6db I 3 2db - 

Phase:   a i leron 
e leva tor  

Surface ba 
Activity 

RMS ba 

( r a d  be 

be 
r a d l s e c )  

> 45O m 

1 18O 

0.00022 

0 .0010 

0.0019 

0.0048 

NA 

wc1 
qf =1.25  
- 

W f  =0.75  

Mw = O .  8 
f 

-32,1% 

-29.1% 

wc2 P1 
- - 
q f  = 0 . 5  

&If =1 .0  W f  = 1 . 0  

qf = 1 . 0  

M W ~ 1 . 2  M =0.8 
f W f 

7 -73.9%  -45.7% 

P 2  
- 
qf = l .  0 

W f  =o. 75 

M =1.0  
Wf 

-45.3% 

-63.3% 1 -37.7% 1 -40.1% 
I 

-59.6%  -32.9% -36.3% 

3 .01  I 1.17  2 .26 2.30 

0.86 0.768 0.755 0.677 

m m m m 

18db 2   ldb  3  2db 

0) m 

118O 125' 115' 125' 
0) OD 

0.00023 

0.0053 0.0048 0.0036 0 .0061 

0.0020  0.0021 0 ,0018  0.0023 

0 ,0011 0 ,0010 0.0011 0,0012 

0.00022  0.00022 0.00024 

P 3  - 
qf =l. 25 

W I  =1.0 

Mw = l . O  
f 

-32.5% 

-32.0% 

-29.8% 

3 . 0 8  

0.728 

m 

2 7db 

m 

120° 

0.00022 

0.0010 

0 ,0019 

0.0053 

Y 

0 
CD 
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Figure 29.  Case 4R Maneuver Load Performance 
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Figure 30. Case 4R Gust Load Performance (Bending Moment) 
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Figure 31. Case 4R Gust Load Performance  (Torsion Moment) 
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Figure 32.  Case 4R Short Period  Frequency 

111 



0.7 
5 .  

0.2 0.3 ..- wc2  N  P2 P1  P3 WC1 --- INFORMATION MATRIX 

EVALUATION  CONDITIONS 

Figure 33.  Case 4 R  Short  Period Damping 

1. Overall  Relative  Score--Coarse  measure of the performance 

of  the  nominal  controller with respect to each  specification. 

ORS = Ideal  Score - Score of Insensitive  Controller 
Ideal  Score - Score of Nominal  Controller 

2. Normalized  Performance/Range--The  normalized  performance 

is the average of the performance of the nominal  controller 

divided by the average of the performance of the insensitive 

controller  for  each  design  specification. 

lP!l = i" - 
N = px i N 

N = number of eval- 
uation  conditions 
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The  normalized  range is the  range of the insensitive  controller 

divided  by the range of the nominal  controller 

3. Normalized  Specification  Violation--Total  spec  violations  for 

each  insensitive  controller  for all evaluation  conditions  nor- 

malized  by  the  maximum  spec  violation 

"-_ "", 
j i  M = no. of insensi- 

tive controllers 

The  criteria  are  described in more  detail in Reference 1. As they  have  been 

defined,  the  lower the numerical  rating the better the  performance of the 

controller. 

Figure 3 4  shows  the  performance of the Information  Matrix  controller a s  

measured  by  the  overall  relative  score  versus the eight  controllers  evaluated 

in Reference 1. Figures 35 and 36 show similar  comparisons  for the Infor- 

mation  Matrix  controller  performance as measured by the Normalized  Per- 

formance/Range  score and  the Normalized  Spec  Violation  score,  respec- 

tively.  Table 1 2  presents a summary of the rankings of the Information 

Matrix  controller  versus the eight  controllers  evaluated  in  Reference 1 .  

113 



2.5 

2 .o 
W a 
0 
0 

v, 
w 1.5 
> 
I- 
W 

5 

5 1 .o 
W e 

4 
CT 
W 
> 
0 

0.5 

r l  
R NOMINAL - R 

( 6  CONDITIONS)  
CASE 4R 

r1 CONTROL ACTIVITY ADDED 
L A  TO ABOVE  CASES 

M I  
I 

A I  

U H  I 

I 
I 
I 
I 
I 
I 

r- c- z 
0 

z 
0 
H 

Figure 34. Overall Relative Score Comparison 

114 



g 

3.5 

3 .O 

2.5 

2.0 

1.5 

1 .o 

0.5 

RSS PER- 
FORMANCE 

RSS  RANGE 

RSS  PERFORMANCE 
AND  RANGE 

[I CONTROL A C T I V I T Y  
LJ ADDED TO CASES 

I I  
I I  

Y 

Y . -  
E 
E 

L 
'z 
4: 
"I 
a 
I- 
H 

"I 
3 r: 

w 
> 
H 

nu 
no 5z 

9 
H 

E 
0 z 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

z 
0 
H 
L 

Figure 35 .  Normalized  Performance/ Range Comparison 

115 



z 
0 

4: 
I- 

1 

H 

0, 
> 
0 
w 
m 
a 

n 
W 
N 

-I 
4 

U 

5 
0 z 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

n n  I- 
El 

CASE 4 R  (6 CONDITIONS) 
(WITHOUT TORSION) 

3 
3 

3 

1 

! 

I 

Figure 36. Normalized Spec Violation  Comparison 



TABLE 12.  RANKING OF INSENSITIVE  CONTROLLERS INCLUDING 
THE INFORMATION  MATRIX  APPROACH 

Cont ro l l e r  

Information 
Matr ix  

Minimax 

Uncer ta in ty  
Weighting 

Additive 
Noise 

Multiplant 

Mismatch 
Es t imat ion  

Nominal 

State- 
Dependent 
Noise 

Sensit ivity 
Vec to r  

Overa l l  
Re la t ive 
Scoring 

Overa l l  
Per formance1   Range  

1 

2 

3 

5 '  

4 

9 

6 

7 

8 

Overa l l  
Specification 
Violation Su rn 

5 

6 

7 

13 

15 

20 

2 1  

22 

26 



Comparisons  and  Conclusions 

Although the  Information  Matrix  controller  does  result  in  improved  perfor- 

mance  over  the  top-ranked  minimax and uncertainty  weighting of Reference 1, 

i t  is premature to state  that the Information  Matrix  technique is in  some way 

better than  the others.  The  fact  that  the  controller  designed with  the  Infor- 

mation  Matrix  technique did do well, though, indicates  significant  potential 

for  the  approach.  It is extremely  difficult to extend  a  theoretical  concept  to 

practical  worthiness with  one  application. It is felt  that  further  investigation 

into  increased  values of p would have resulted  in  an  even  better  perfor- 

mance. It is also  felt  that a reformulation of the response  vector to better 

control  short  period  frequency  and damping would have  improved  perfor- 

mance.  (This  actually refers to  the  evaluation of the insensitive  controllers 

in  Reference 1. ) Some  definite  advantages  that  can be stated at this  time 

include: 

2 

1. 

2. 

3 .  

4. 

No a priori  range of parameter  variations is required  since 

the  design is done at  the  nominal. One needs  only  the partial 

derivatives of the system  matrices  at the  design  point. 

The  method  treats  nicely  the  response  uncertainties. 

Since  the  control is assumed to  be  in  the form  u = Kx, only 

n  -dimensional  equations  need  be  solved. N o  extra  modeling 

or filters  are  necessary. 

- - 
X 

It treats  the  actual  closed-loop  sensitivity,  unlike  the  sensi- 

tivity  vector  augmentation or uncertainty weighting  methods. 
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5. The  technique  can  be  extended  easily  to  limited-state  feedback 

and  possibly  observer/Kalman  filter  cases. 

6.  With  the  modified Bartels-Stewart  algorithm,  only  a  modest 

eight  linear  equations  (equivalent)  need  be  solved  per  iteration 

to get  the  cost  and  gradient  for p = 3 .  

7. The  approach  provides an intuitive  feel  and  insight to  the  design 

problem. It indicates  clearly the  improvement  in  system sen- 

sitivity (in terms of the dispersion  matrix) and  the price  paid 

in terms of performance J The  key  parameter p controls 

the trade-off  between  sensitivity and performance. 
1' 2 

8. The  technique  can  be tuned to weight  the  relative  importance 

of different  parameters. 
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SECTION V 

CONCLUSIONS  AND  RECOMMENDATIONS 

The  objective  of  this  study,  to  develop  useful  synthesis  techniques  from  the 

two advanced  theoretical  concepts  created in the  previous  study,  has  been 

satisfied.  This  study  has shown that 

The  insensitive  controller  synthesis  technique  based on the 

Finite  Dimensional  Inverse (FDI) concept is impractical  for 

flight  control  system  design  in  its  current  formulation.  This 

is due  to  the  time-varying  nature of the resultant  controller, 

which is more  amenable to trajectory-type  applications. 

Despite  severe  computational  requirements, FDI controller 

synthesis and implementation are  feasible.  Experiments 

with  recycling  stored  data  to  alleviate  storage  requirements 

produced  apparently  satisfactory  results following some 

initialization  transients  that  could be reduced  with  filtering, 

The  FDI  technique  provides  an  on-line  identification  capability 

that could be  useful  for  many  applications. 

The  Information  Matrix (IM) synthesis technique is definitely 

applicable to  flight  control  problems  because  the  resultant 

insensitive  controller  has  constant  gains. 

The IM controller  performs  as well  as the  top-ranked 

uncertainty  weighting  and  minimax  controllers of the previous 

study. As in  the  previous  study, i t  will  be necessary to 
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I 

qualify  the  results of the  evaluation.  It  should  be  emphasized 

that good performance on one  example  with  one se t  of cri teria 

does not imply  universal  goodness.  The IM approach, how- 

ever, with its  design feature of weighting performance  versus 

sensitivity without  specifying  the  range of uncertain  param- 

eters, together  with  the  evaluation  results  indicate a worth- 

while  development. 

Based on  the results of this  study, we recommend  the following areas  for 

further  research: 

0 Formulation of the  FDI approach to handle  stationary 

problems . 
0 Development of FDI  capability to handle  nonminimum  phase 

sys  tems , 

This  capability is needed, as demonstrated  in  the C-5A 

example, when the  design  responses  used  result  in  unstable 

compensation. 

0 Further  refinement of the IM methodology  to  quantify  the 

import of modulation of controller  design  parameters. 
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APPENDIX A 

THE SEVENTH-ORDER MODEL 

The  numerical  data for the  seventh-order  model for six  parameter  values 

is given.  The  usual  state  variable  representation is used: 

2 = Fx +G1u + G 2 y  

r = H x + D u  

with 

The G and G matrices are the same for all parameter  values.  They are: 
1 2 

0 

6 

0 

0 

0 

0 

0 

0 

0 

7 . 5  

0 

Y 

A 

G2 - 
- 

- 
0 

0 

0 

0 

0 

0 

0.861 

-l 

b d 
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The  last  four rows of F and the last five  rows of H and D are   a lso indepen- 

dent of the parameters.  Thus, we may wr i te  F, H, and D as: 

F =  [ "1, F2 H = [ D = [ "'3 D2 
where 

0 0 1 0 0 0 0 

0 0 0 -6 0 0 

0 0 0 0 0 -7.5 0 

0 0 0 0 0 -0.371 1 
0 0 0 0 1 0 0 

0 0 0 0 0 1 

0 0 0 -2 0 h = -2.27483 -03 992 
0 0 0 0 0 -7.5 0 

h 0 0 0 0 0 
992 

0 0 

D2 =[; ij 
7.5 

The  matrices F H1, and D a r e  shown  below for the six  parameter 

values in Tables A1 through A6. 
1' 1 



TABLE Al .  NOMINAL CONDITION MATRICES 

Row 1 

Row 2 

Row 3 

-6 .99913-01   3 .27243+00   -3 ,56673-02   -6 .6031E-01   -2 .03583+02   -2 .02563+02   -8 .69143+00  

-4 .04763-01   -1 .09593+00  3 .16393-02   -1 .87093-01   -5 .26553+02  -2 .30743+03  -9 .48983i -00  

-1 .68523+00  1 .80523-02   -9 .79833-01   -3 .00303+01  -3 .09813+03  1 .23573+03  -1 .84593+01 

H1 

Row 1 

Row 2 

Row 3 

Row 4 

-2.8733E+04  -1.56873+03  1.31743+04  1.24123+06  3.25753+07  3.53443+06  -3.39053-I-05 

-2.2396Ec04  -3 .44493+03  -1 .6286E+03  -8 .69383+04  8 ,6275E-t-06  -2 ,42933+06  -2 .72103+05 

-1 .57643+04  -1 ,47073+04  1 .25103+06  -3 .3848Ec05  -2 .56273+07  1 .20643+07  -1 .48033+05 

5 .4500E+03  -2 ,78423+04  -5 .88793+04  -6 .67873+03  1 .33273+07  2 .69573+06  7 .19593+04 

Row 1 

Row 2 

Row 3 

Row 4 

0 .  0 .  

0 .  0 .  

-8 .48643+06 3 .18453+06  

-1.27193+07  2 ,4720E+05 



TABLE  A2.  WORST  CASE 1 MATRICES 

~ F1 

Row 1 

~ Row 2 

~ Row 3 

-9.56443-01  4.07573+00  -5.96483-02  -1.0294E+OO  -1.62963+02  -2.62063+02  -1.18483+01 

-4.96623-01  -1.2354E+00  4.07583-03  -5.94963-01  -5.21793+02  -2.54023+03  -1.11943+01 

-2.93213+00  -2.16243-01  -1.2407E+00  -2.394E+01  -2.95213+03  1.28093+03  -3.33863+01 

H1 

Row 1 

Row 2 

Row 3 

Row 4 

-3.7187Et-04  -3,14213+03  1.58093+04  1.4645E+06  3.92823-1-07  1.5362E-r-06  -4.43093+05 

-3.07293+04  -5 .06143+03 - 2 .  1960E+03  -7.03713+04  1.3523E+07  -4.00923+06  -3.  74163+05 

-3.43363+04  -2.6231E+04  1,4743E+06  -3.2140E+05 - 2 .  86243+07  1 .6160E+07  -3 .6035Ec05 

8.16253+03  -4.35763+04  -2.9472Et-04  -7.6219Ec03  1.5514E+O7  4.46983+06  1.07723+05 

Row 1 

Row 2 
0. 0. 

0. 0. 
~ ROW 3 

-1.06083+07  3.98063+06 
Row 4 , -1.58993+07  3.0900Ei-05 

, 



TABLE A5. u) PERTURBATION  MATRICES 

( a  = 0.75 WNOM) 

I 1 
-7 .38433-01   3 .26563+00   -4 .28883-02   -7 .57623-01   -1 .60243+02   -2 .06363+02   -9 .   15473+00  
Row 2 

Row 3 
-5 .07393-01   -1 .0219E+00  1 .3385E-02  -3 .68743-01   -4 .59643+02  -2 .   12153+03  -9 .05583+00 

-2 .08143+00  -1 .00203-01   -9 .8431E-01  -2 .10953+01  -2 .65793+03 1. 1008Et-03  -2.34233+01 

Row 1 

Row 2 
-2.93713+04  -2 .19353+03  1 .2852E+04  1 .18603+06  3 .17973+07  2 .0052E+06  -3 .48873+05 

-2.3701E+04  -3 .81443+03  -1 .69753+03  -6 .15853+04  9 .91853+06  -2 .92143+06  -2 .88383+05 
Row 3 
-1.95023+04  -1 .6019E+04 1. 1962E+06  -2 .30693+05  -2 .01373+07  1 .07303+07  -1 .96243+05 
Row 4 

5.36423+03  -2 .78683+04  -3 .07363+04  -4 .9718Ec03  1 .27733+07  2 .7675E+06  7 ,05683-1-04 

Row 1 

Row 2 

Row 3 
-8.4864E+06  3 .18453+06 
Row 4 
-1 .27193+07  2 .47203+05 

0 .  0 .  

0 .  0 .  



TABLE A6. 4 PERTURBATION  MATRICES 

Row 1 

Row 2 

Row 3 

-8.89113-01  4 .08813+00  -4 .   73023-02  -8 .61783-01  -2 ,38413+02  -2 .5439Ec02  -1 .1035E+01 

-6.40553-01  -1 .3372E+00  3 ,20413-02  -3 .06583-01  -6 .32263+02  -2 .80373+03  -1 .1641E+Ol 

-2 ,25593+00  -2 ,38913-02   -1 .19643+00  -3 ,2267E+01  -3 .70753+03  1 .48963+03  -2 .49543+01 

H1 

Row 1 

Row 2 

Row 3 

Row 4 

-3.61713+04  -2,22563+03  1.61833+04  1.52003+06  4.03853+07  3.7692E-r-06  -4.27803+05 

-2.84843+04  -4.4490E+03  -1.97533+03  -9.36  11E+04  1.12603+07  -3.23453+06  -3.4624Et-05 

-2.60153+04  -2.36343+04  1.52963+06  -4.45073+05  -3.94643+07  1.94813+07  -2.5615Ec05 

8.33363+03  -4.35173+04  -5.76283+04  -1.16983+04  1.6277E+07  4.44703+06  1.09183+05 

Row 1 

Row 2 

Row 3 

Row 4 

0. 0. 

0. 0. 

-1.06083+07 3.98063+06 

-1.58993+07  3.0900E+05 



APPENDIX B 

MAXIMUM DIFFICULTY METRIC 

This appendix summarizes work performed  (on the  maximum  difficulty 

metric)  in  determining the  design point in  parameter  space at which  control 

is most  difficult. 

Recall  that  the  basic  idea w a s  to  find the  point - a in parameter  space to 

maximize  the  difficulty  metric 
A A  

J = tr[H'  (H W H')  H] = tr D 
-1 A A 

a 

The  approach  taken is to get  an  analytic  expression  for  the  gradient b J / b a  

that  could  be used  as a basis  for a numerical  optimization  scheme. 

In  Equation (B-1) 

n AT H = He 

where T is an  arbitrary  parameter.  Also, for notational  convenience 

The  matrices A,  H are subject  to  parameter  uncertainty 
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P 

i= 1 
H + H + 8aiHi 

Consider now a first  order  pertubation  in CY. ai +  CY. and  the  resulting 
1 1 

change  in J: 

expanding  to first order,  keeping terms of o( 8 )  only  and  using 

we obtain 

(B-3b) 

8J = 2 tr (H'X 8H) - t r  (X H H'X gX) 
A "1 A "1 - * "1 - 

A 

So w e  need  only to get bH and 6% - in terms of 8a.. 
1 

A 

First  consider 6H. 

Using a result  from  Bellman, 

Thus, 
A A 

(B-5) 

( B -5a) 



where 

r ( T )  = S T  0 eYAT A. 1 eAT dt 

The  process of computing 6X proceeds  in a similar manner. 
- 
- 

It is necessary  to  work  with X, so with a change of variable, $6 
- 
- 

Expanding  the integral  term,  using  Equation (B-5), gives 

A 

+ H  W e A'T H + H.eAT W I;' 
i 1 

Substituting  Equations (B-6) and  (B-8)  into  Equation (B-4) gives 
A 

A '  --1 bH "1 A A - -1 ax - bJ = 2 t r  (H X -) - t r  (X H H'X --=) 
a ai - bcYi - - boi 

= 2 t r  [;'E-' H. eAT + D- r(T)  - D  W1(T) - D  H X Hi e W ]  2 A' "1 AT - 1 a a a -  
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where D. is the  difficulty  matrix  and 
CY 

W1 (T)  = f' e B' r '  (T - t) e T -At BR-l -A't dt 
d 0  

Computational  methods  for  evaluating W (T)  have  been  considered,  but 

thus far nothing simple  has  come up. A straightforward  numerical  evaluation 
1 

L L 

may  be easier. 
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